

CUSTOMER'S APPROVAL SPECIFICATIONS

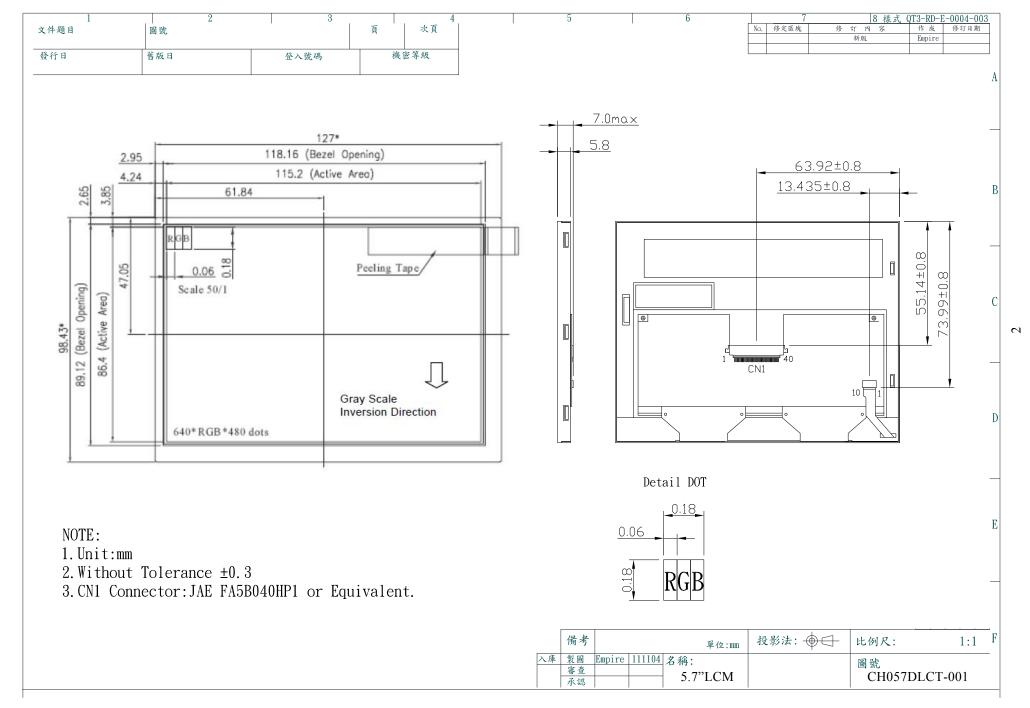
MODEL: CH057DLCT-00% (Complied with RoHS)

ISSUE:Jul.12.2013

Spec Condition: Preliminary

No.	ITEM	PAGE
1	COVER	
2	RECORD OF REVISION	0-1
3	MECHANICAL SPECIFICATIONS	1
4	OUTLINE DIMENSIONS	2
5	INTERFACE PIN CONNECTION	3
6	BLOCK DIAGRAM	4
7	ABSOLUTE MAXIMUM RATINGS	4
8	ELECTRICAL CHARACTERISTICS	5
9	OPTICAL CHARACTERISTICS	6~8
10	TIMING SPECIFICATIONS	9~12
11	RELIABILITY TEST	13
12	USE PRECAUTIONS	14~15

CUSTOMER	CHEFREE					
APPROVAL	APPROVAL	PREPARE				
	ch lee	kevin	Well			


2.RECORD OF REVISION

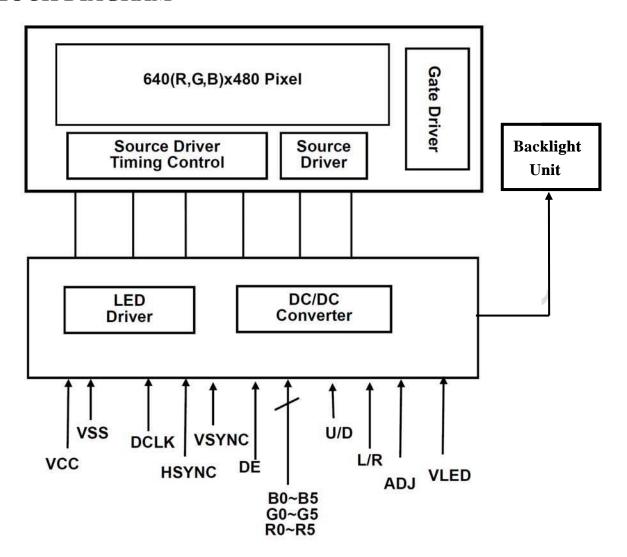
_	ILLC	JILD OF	VE A 121	011
	Rev	DATE	PAGE	SUMMARY
	0.1	2011.07.12	ALL	Preliminary specification was first issued
	0.4 '"""	""4236@9@3"""	6	Modify Brightness Min. 722pku≓V{r 0842pku

3.MECHANICAL SPECIFICATIONS

NO.	ITEM	SPECIFICATION
(1)	Number Of Dots (Dots)	640(R.G.B) X 480
(2)	Module Size(mm)	127.0(W) x 98.43(H) x7(D)
(3)	Active Area(mm)	115.2 (W) x 86.4(H)
(4)	Pixel Pitch(mm)	0.06 (W) x 0.18 (H)
(5)	LCD Model	TFT
(6)	Backlight Color	White LED
(7)	Viewing Direction	6 O'clock
(8)	Gray Scale Inversion Direction	12 O'clock
(9)	Color Configuration	R.G.B Stripe
(10)	Module Weight(g)	(110)

Note:Viewing direction for best image quality is different from TFT definition, ther is the 180 degrees shift.

5. INTERFACE PIN CONNECTION


5.1 LCM PANEL DRIVING SECTION

40PIN Connector : JAE FA5B040HP1 or Equivalent.

PIN NO.	SYMBOL	FUNCTION	REMARK
1	U/D	Up or Down Display Control	
2	NC	No Connection	
3	HSYNC	Horizontal SYNC.	
4	VLED	Power Supply for LED Driver circuit	
5	VLED	Power Supply for LED Driver circuit	
6	VLED	Power Supply for LED Driver circuit	
7	VCC	Power Supply for LCD	
8	VSYNC	Vertical SYNC.	
9	DE	Data Enable	Note
10	VSS	Power Ground	
11	VSS	Power Ground	
12	ADJ	Brightness control for LED B/L	
13	В5	Blue Data 5 (MSB)	
14	B4	Blue Data 4	
15	В3	Blue Data 3	
16	VSS	Power Ground	
17	B2	Blue Data 2	
18	B1	Blue Data 1	
19	В0	Blue Data 0 (LSB)	
20	VSS	Power Ground	
21	G5	Green Data 5 (MSB)	
22	G4	Green Data 4	
23	G3	Green Data 3	
24	VSS	Power Ground	
25	G2	Green Data 2	
26	G1	Green Data 1	
27	G0	Green Data 0 (LSB)	
28	VSS	Power Ground	
29	R5	Red Data5 (MSB)	
30	R4	Red Data 4	
31	R3	Red Data 3	
32	VSS	Power Ground	
33	R2	Red Data 2	
34	R1	Red Data 1	
35	R0	Red Data 0 (LSB)	
36	VSS	Power Ground	
37	VSS	Power Ground	
38	DCLK	Clock Signals; Latch Data at the Falling Edge	
39	VSS	Power Ground	
40	L/R	Left or Right Display Control	

Note: If DE signal is fixed low, SYNC mode is used. Otherwise, DE mode is used.

6. BLOCK DIAGRAM

7.ABSOLUTE MAXIMUM RATINGS

7.1 ELECTRICAL ABSOLUTE MAXIMUM RATING

ITEM	SYMBOL	MIN.	MAX.	UNIT	REMARK
Power Supply Voltage	VCC	-0.3	+5.0	V	
Signal Input Voltage	VI	-0.3	VCC+0.3	V	

7.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

ITEM	OPERATING		STO	RAGE	DEMADIZ	
ITEM	MIN.	MAX.	MIN.	MAX.	REMARK	
Ambient Temperature[°C]	-20	70	-30	80	Note 1,2,3	
Humidity[%RH]						

Note 1: The response time will become lower when operated at low temperature.

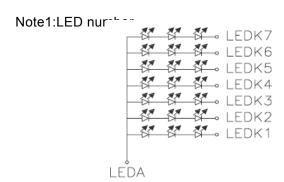
Note 2: Background color changes slightly depending on ambient temperature.

Note 3 : Operation Ta=70 $^{\circ}$ C & -20 $^{\circ}$ C \leq 240Hrs.

8.ELECTRICAL CHARACTERISTICS

8.1 LCM ELECTRICAL CHARACTERISTICS

Ta=25°C


ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT
Power supply for LCD	VCC	3.0	3.3	3.6	V
l ower suppry for LCD	ICC **	-	(111)	(140)	mA
Input High Voltage	$ m V_{IH}$	0.7*VCC	-	VCC	V
Input Low Voltage	$ m V_{IL}$	0	-	0.3*VCC	V
Ripple Voltage	VRF	-	-	100	mV_{P-P}

^{**}Test pattern:Black

8.2 BACKLIGHT UNITS

Ta=25°C

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	REMARK
LED Driver Voltage	VLED	4.5	5	5.5	V	
LLD Dirver voltage	ILED	-	333	-	mA	
ADJ frequency	-	19	20	21	KHz	
ADII AVI	$\mathrm{ADJ}_{\mathrm{IH}}$	3.0	-	3.3	V	
ADJ Input Voltage	$\mathrm{ADJ}_{\mathrm{IL}}$	0	-	0.3	V	
LED Life Time	Ta=25°C					
(For Reference only)	60-70%RH	-	50000	-	Hr	Note 1

Note2:The LED of B/L is drive by current only, drive Voltage is for reference only, drive voltage can make driving current under safety area (current Between minimum and maximum).50K hours is only an estimate for reference.

9.OPTICAL CHARACTERISTICS

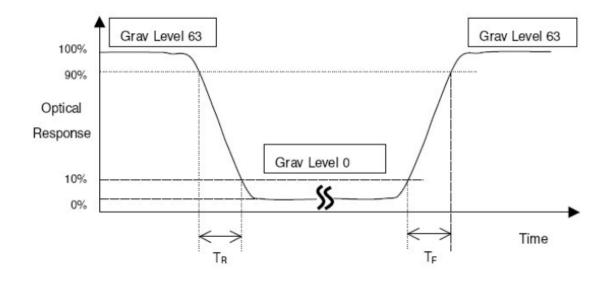
Ta=25°C

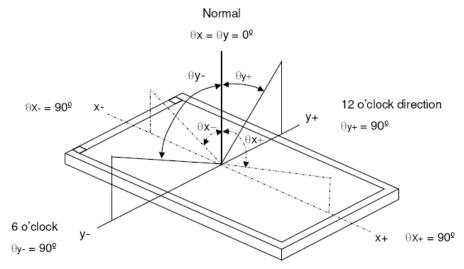
ITEM		SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	REMARK
Contrast F	Ratio	CR		200	300	-	-	Note (1)
Response	Timo	TR		-	15	-	ma	Note (2)
Response	Time	TF		-	35	-	ms	Note (2)
Brightne	ess	L		(500)	(620)	_	cd/m2	
Uniform	nity	YU		70	80	-	%	Note (5)
	Red	X_R	Viewing	(0.565)	(0.615)	(0.665)		
	Reu	Y_R	normal angle	(0.310)	(0.360)	(0.410)	- -	Note (4)
	Green	X_{G}	$\theta X = \theta Y = 0^{\circ}$	(0.295)	(0.345)	(0.395)		
Color		Y_{G}		(0.490)	(0.540)	(0.590)		
Chromaticity	Blue	X_{B}		(0.098)	(0.148)	(0.198)		
		Y_B		(0.056)	(0.106)	(0.156)		
ŀ	White	X_{W}		(0.259)	(0.309)	(0.359)		
		Y_{W}		(0.270)	(0.320)	(0.370)		
		θ Y+	X7	50	60	-		
Viewin	σ	θ Y-	Viewing normal angle	30	40	-	Deg.	/->
Angle	_	θ X+	$\theta X = \theta Y = 0^{\circ}$	60	70	-		Note (3)
		θ X-	CR≧10	60	70	-		
Image St	ick	tis	2 hours	-	-	2	sec	Note (6)

Note (1) Definition of Contrast Ratio(CR):

The contrast ratio can be calculated by the following expression

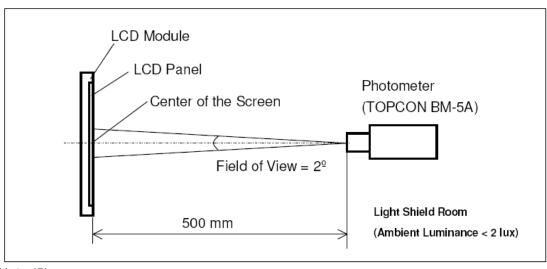
Contrast Ratio (CR)=L63/L0

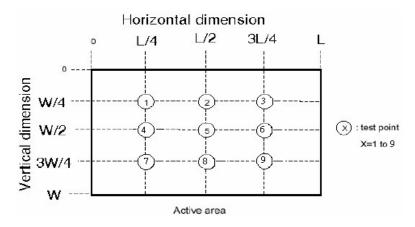

L63:Luminance of gray level 63


L0:Luminance of gray level 0

CR=CR(5)

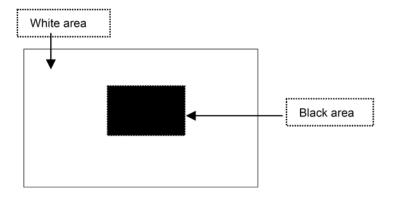
CR(X) is corresponding to the Contrast Ratio of the point X at Figure in Note(5)


Note(2) Definition of Response Time(TR,TF):



Note (4) Measurement Set-Up:

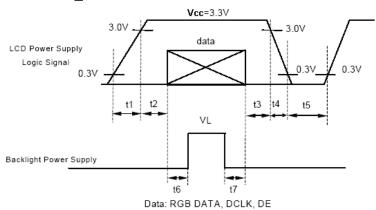
The LCD module should be stabilized at a given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.


Note (5)

$$\left(\begin{array}{c} \text{1-} & \frac{\text{MAX Luminance} - \text{Average Luminance}}{\text{Average Luminance}} \\ \end{array}\right) \quad \text{x100\%} \quad \geq 70\%$$

Note (6) Definition of Image sticking (tis):

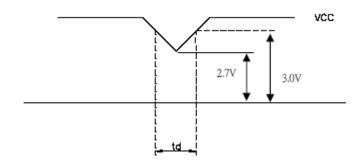
Continuously display the test pattern shown in the figure below for 2 hours. Then display a completely white screen. The previous imageshall not persist more than 2 sec at 25 $^{\circ}$ C.


10. TIMING SPECIFICATIONS

10.1 POWER SIGNAL SEQUENCE

10.1.1: Power Signal sequence:

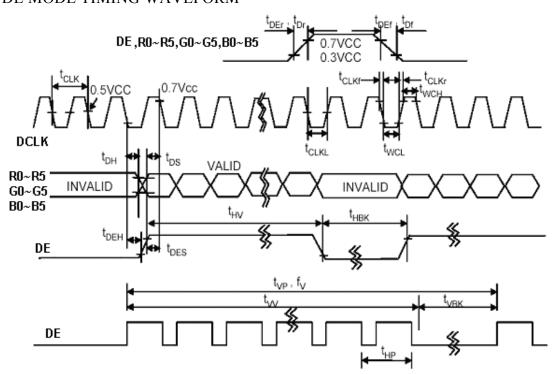
 $t1 \le 10ms : 1 sec \le t5$ $50ms \le t2 : 200ms \le t6$ $0 < t3 \le 50ms : 200ms \le t7$


0<t4 ≤10ms

10.1.2: VCC-dip condition:

10.5.2.1: 2.7 V \leq VCC \leq 3.0V,td \leq 10 ms

10.5.2.2: VCC>3.0V,VCC-dip condition should be the same with VCC-turn-on condition.

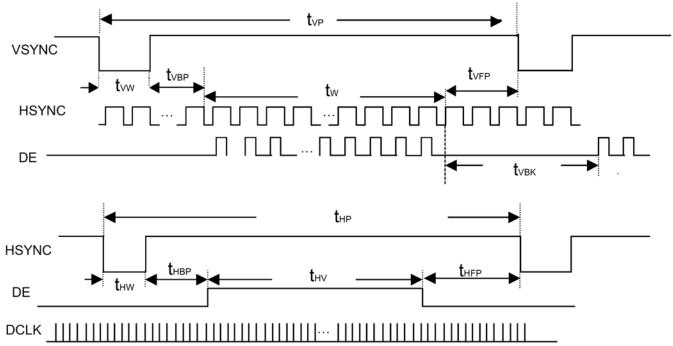


10.2 AC TIMING CHARATERISTICS.

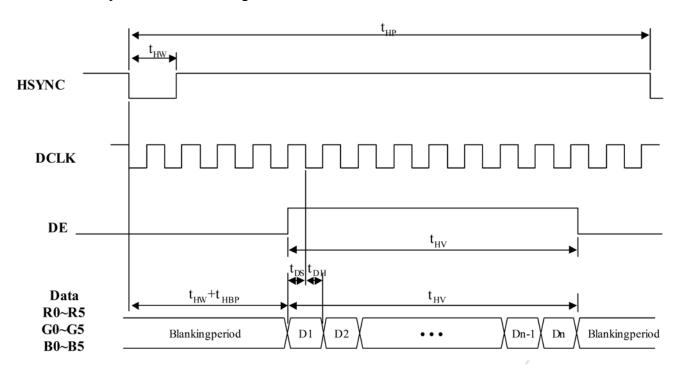
	ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	REMARK
		t_{CPH}	33	40	43	ns	
	Frequency	$ m f_{CPH}$	23	25	30	MHz	
	Low Level width	$t_{ m CWL}$	6	-	-	ns	
	High Level width	$t_{ m CWH}$	6	-	-	ns	
	Rise Fall Time	t_{CLKr}, t_{CLKf}	-	-	3	ns	
	Duty	_	0.45	0.50	0.55	-	Note1
	Setup Time	$t_{ m DES}$	5	-	-	ns	
	Hold Time	$t_{ m DEH}$	10	-	-	ns	
	Rise, Fall Time	$t_{\mathrm{DEr}}, t_{\mathrm{DEf}}$	-	-	16	ns	
	Horizontal Period	t_{HP}	750	800	900	t_{CLK}	
DE(D-4-	Horizontal Valid	$t_{ m HV}$	640	640	640	t_{CLK}	
DE(Data	Horizontal Blank	$t_{ m HBK}$	110	160	260	t_{CLK}	
Enable)	Vertical Period	t_{VP}	515	525	560	t_{HP}	
	Vertical Valid	$t_{ m W}$	480	480	480	t_{HP}	
	Vertical Blank	$t_{ m VBK}$	35	45	80	t_{HP}	
	Vertical Frequency	fv	55	60	65	Hz	
	Setup Time	$t_{ m DS}$	5	-	-	ns	
Data R,G,B	Hold Time	t_{DH}	10	-	-	ns	
	Rise, Fall Time	$t_{\mathrm{Dr}}, t_{\mathrm{Df}}$	-	-	3	ns	

Note: (1)Clock Duty= tCLKL / tCLK.

10.3 DE MODE TIMING WAVEFORM


10.4 SYNC MODE INPUT SIGNAL CHARACTERISTICS

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	REMARK
Clock Period	t_{CLK}	33	40	43	ns	
Clock Frequency	$ m f_{CLK}$	23	25	30	MHz	
Clock Low Level width	$t_{ m WCL}$	6	-	-	ns	
Clock High Level width	t_{WCH}	6	-	-	ns	
Clock Rise Fall Time	$t_{\mathrm{CLKr}}, t_{\mathrm{CLKf}}$	-	-	3	ns	
HSYNC Period	$\mathfrak{t}_{\mathrm{HP}}$	750	800	900	t_{CLK}	
HSYNC Pulse Width	$t_{ m HW}$	5	30		t_{CLK}	
HSYNC Front Porch	$t_{ m HFP}$	1	16	116	t_{CLK}	
HSYNC Back Porch	$t_{ m HBP}$	1	114	139	$t_{\rm CLK}$	
HSYNC Width + Back Porch	$t_{\mathrm{HW}} + t_{\mathrm{HBP}}$	144	144	144	t_{CLK}	
Horizontal Blank	t_{HBK}	1	160	260	$t_{\rm CLK}$	Note1
Horizontal Valid	$t_{ m HV}$	640	640	640	t_{CLK}	
VSYNC Period	$t_{ m VP}$	515	525	560	t_{HP}	
VSYNC Pulse Width	$t_{ m VW}$	1	3	5	t_{HP}	
VSYNC Front Porch	$t_{ m VFP}$	1	10	45	t_{HP}	
VSYNC Back Porch	$t_{ m VBP}$	30	32	34	t_{HP}	
VSYNC Width+Back Porch	$t_{ m VW} + t_{ m VBP}$	35	35	35	t_{CLK}	
Vertical Blank	t_{VBK}	35	45	80	t_{HP}	
Vertical data Width	$t_{ m W}$	480	480	480	t_{HP}	
Data Setup Time	$t_{ m DS}$	5	-	-	ns	
Hold Time	t _{DH}	10	-	-	ns	


Note: (1) $t_{HBK} = t_{HFP} + t_{HW} + t_{HBP}$

10.5 SYNC MODE TIMING WAVEFORM

10.5.1: Input vertical timing

10.5.2 Input horizontal timing

11. RELIABILITY TEST

ENVIRONMENTAL TEST				
NO.	ITEM	CONDITIONS	TIME PERIOD	REMARK
1	High Temperature Storage	80°C	240HRS	
2	Low Temperature Storage	-30°C	240HRS	
3	High Temperature Operation	70°C	240HRS	Note (2)
4	Low Temperature Operation	-20°℃	240HRS	Note (2)
5	Temperature Cycle	-30° C $\leftarrow 25 \rightarrow 80^{\circ}$ C (30min) (5min) (30min)	200CYCLE	Note (2)
6	High Temperature Humidity Operation	60℃ 90%RH	240HRS	Note (2)

Note (1): a. The module should work properly.

b. Before and after function test, the difference of consumptive current.should be within 10%

Note (2): a. The module should work properly.

b. The modlue won't be deformative, color changeable or broken.

c. The modules can't be apart.

12. USE PRECAUTIONS

12.1. LIQUID CRYSTAL DISPLAY (LCD)

LCD is made up of glass, organic sealant, organic fluid, and polymer based polarizers. The following precautions should be taken when handing,

- (1). Keep the temperature within range of use and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel off or bubble.
- (2). Do not contact the exposed polarizers with anything harder than an HB pencil lead. To clean dust off the display surface, wipe gently with cotton, chamois or other soft material soaked in petroleum benzin.
- (3). Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause polarizer deformation or color fading, while an active LCD with water condensation on its surface will cause corrosion of ITO electrodes.
- (4). Glass can be easily chipped or cracked from rough handling, especially at corners and edges.
- (5). Do not drive LCD with DC voltage.

12.2. Liquid Crystal Display Modules

12.2.1. Mechanical Considerations

LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modifications. The following should be noted.

- (1). Do not tamper in any way with the tabs on the metal frame.
- (2). Do not modify the PCB by drilling extra holes, changing its outline, moving its components or modifying its pattern.
- (3). Do not touch the elastomer connector, especially insert an backlight panel (for example, EL).
- (4). When mounting a LCM make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- (5). Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels.

12.2.2. Static Electricity

LCM contains CMOS LSI's and the same precaution for such devices should apply, namely

- (1). The operator should be grounded whenever he/she comes into contact with the module. Never touch any of the conductive parts such as the LSI pads, the copper leads on the PCB and the interface terminals with any parts of the human body.
- (2). The modules should be kept in antistatic bags or other containers resistant to static for storage.
- (3). Only properly grounded soldering irons should be used.
- (4). If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.
- (5) The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended.

(6). Since dry air is inductive to statics, a relative humidity of 50-60% is recommended.

12.2.3. Soldering

- (1). Solder only to the I/O terminals.
- (2). Use only soldering irons with proper grounding and no leakage.
- (3). Soldering temperature : 280°C ± 10°C
- (4). Soldering time: 3 to 4 sec.
- (5). Use eutectic solder with resin flux fill.
- (6). If flux is used, the LCD surface should be covered to avoid flux spatters. Flux residue should be removed after wards.

12.2.4. Operation

- (1). The viewing angle can be adjusted by varying the LCD driving voltage V0.
- (2). Driving voltage should be kept within specified range; excess voltage shortens display life.
- (3). Response time increases with decrease in temperature.
- (4). Display may turn black or dark blue at temperatures above its operational range; this is (however not pressing on the viewing area) may cause the segments to appear "fractured".
- (5). Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".

12.2.5. Storage

If any fluid leaks out of a damaged glass cell, wash off any human part that comes into contact with soap and water. Never swallow the fluid. The toxicity is extremely low but caution should be exercised at all the time.

12.2.6 Limited Warranty

Unless otherwise agreed between Chefree and customer, Chefree will replace or repair any of its LCD and LCM which is found to be defective electrically and visually when inspected in accordance with Chefree acceptance standards, for a period on one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of Chefree is limited to repair and/or replacement on the terms set forth above. Chefree will not responsible for any subsequent or consequential events.