

Product Specification

www.texim-europe.com

Distributed by:

CUSTOMER' S APPROVAL SPECIFICATIONS

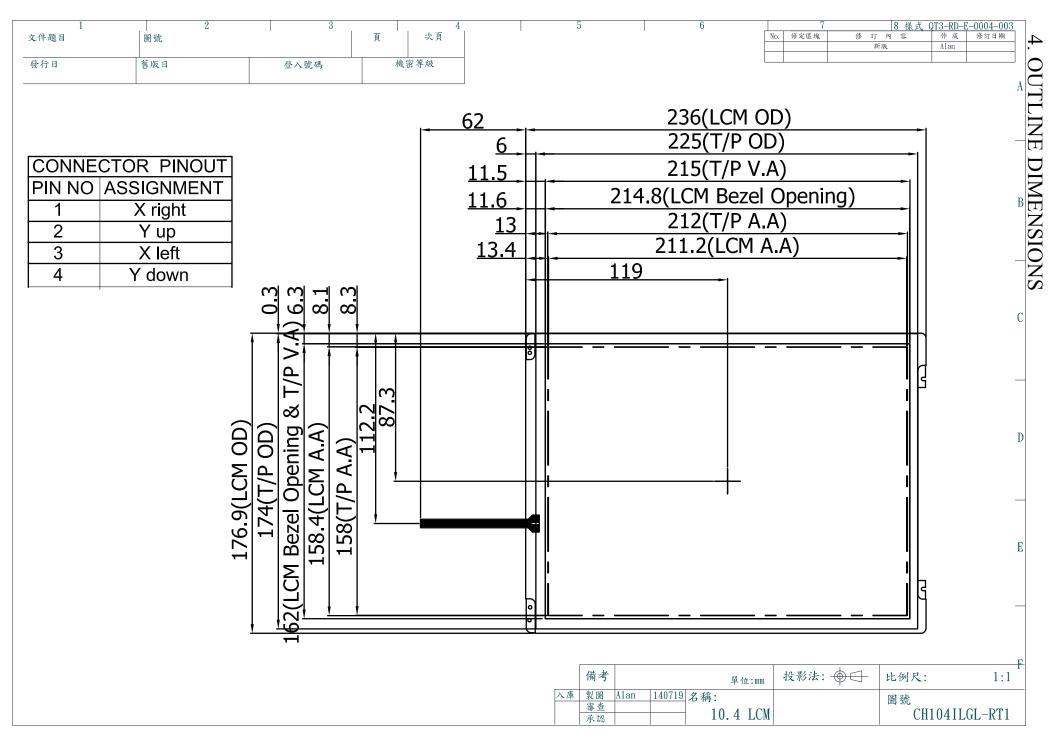
MODEL: CH104ILGL-001

(Complied with RoHS)

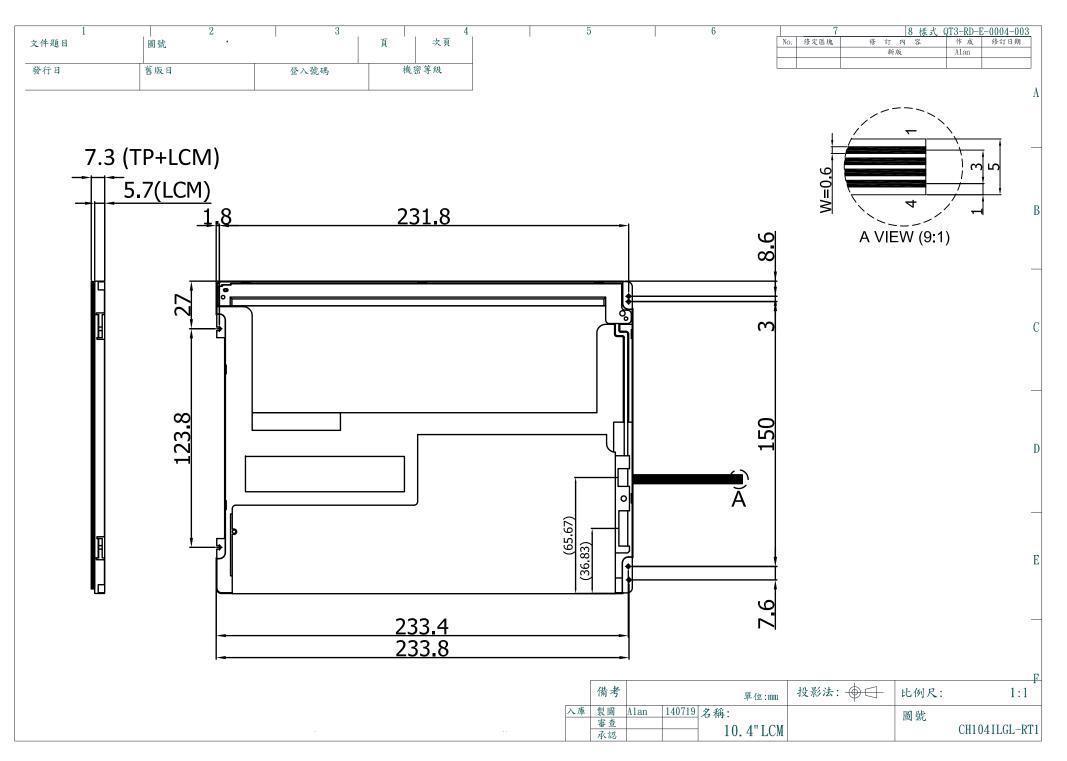
<u>ISSUE:AUG.22.2014</u> Spec Condition:preliminary

	Spec Condition.p	<u>i e i i i i i i i i i i i i i i i i i i</u>
NO.	ITEM	PAGE
1	COVER	
2	RECORD OF REVISION	0-1
3	MECHANICAL SPECIFICATIONS	1
4	OUTLINE DIMENSIONS	2-3
5	INTERFACE PIN CONNECTION	4
6	BLOCK DIAGRAM	5
7	ABSOLUTE MAXIMUM RATINGS	5
8	ELECTRICAL CHARACTERISTICS	6-7
9	OPTICAL CHARACTERISTICS	7-9
10	TIMING SPECIFICATIONS	10-11
11	RELIABILITY TEST	12
12	PRECAUTIONS FOR USE	13

CUSTOMER		CHEFREE				
APPROVAL	APPROVAL CHECKER PREPAR					
	Jobly	Jobly	lun			


2.RECORD OF REVISION

<u> </u>	REV	DATE	PAGE	SUMMARY
F				
-	0.1	2014.07.19 2014.08.22		Preliminary specification was first issued. Change Connector, from MSB240420HE to MSB24013P20HA.
-	0.2	2014.00.22		Change Connector, from WSB24042011E to WSB240151 2011A.
L				


3.MECHANICAL SPECIFICATIONS

(1)	Number Of Dots (Dots)	1024(R.G.B) X 768
(2)	Module Size(mm)	236.0(H) X 176.9(V) X 7.3 (D)
(3)	Active Area(mm)	211.2(H) X 158.4(V)
(4)	Pixel Pitch(mm)	0.20625 (H) X 0.20625(V)
(5)	LCD / Polarizer Model	TFT, Transmissive, Normally/White
(6)	Backlight Color	White,LED
(7)	Viewing Direction	6 O'clock
(8)	Support Color	262k/16.7M
(9)	Electrical Interface	LVDS Interface
(10)	Color Configuration	R.G.B. Vertical Stripe
(11)	Module Weight(g)	TBD

Note 1.Viewing direction for best image quality is different from TFT definition, there is the 180 degrees shift.

Ν

ω

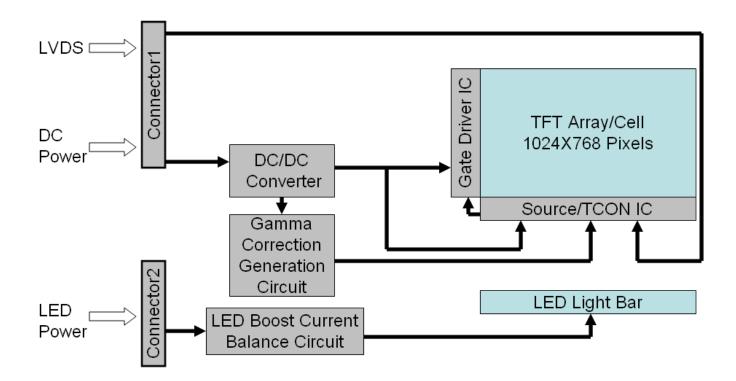
5. INTERFACE PIN CONNECTION 5.1 LCM PANEL DRIVING SECTION

Connector: MSB24013P20HA or Equivalent

PIN NO.	SYMBOL	FUNCTION	REMARK
1	VDD	Power Supply, 3.3V (typical)	
2	VDD	Power Supply, 3.3V (typical)	
3	VSS	Ground	
4	REV	Reverse Scan selection	Note 1
5	Rin1-	-LVDS differential data input	
6	Rin1+	+LVDS differential data input	
7	VSS	Ground	
8	Rin2-	-LVDS differential data input	
9	Rin2+	+LVDS differential data input	
10	VSS	Ground	
11	Rin3-	-LVDS differential data input	
12	Rin3+	+LVDS differential data input	
13	VSS	Ground	
14	CIkIN-	-LVDS differential clock input	
15	CIkIN+	+LVDS differential clock input	
16	VSS	Ground	
17	Rin4-	-LVDS differential data input	
18	Rin4+	+VDS differential data input	
19	SEL Á	% /8 bits LVDS data input selection(H:8bit)	
20	NC	Not connect	

Note 1: I REV = LOW/NC

Gate Scan : $Y_1 \rightarrow Y_2 \rightarrow Y_3$ $Y_1 : G_1 \rightarrow G_2 - - - \rightarrow G_{258}$ Source Scan : $X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_5$ $X_1 : S_1 \rightarrow S_2 - - - \rightarrow S_{600}$


II REV = High Gate Scan : $Y3 \rightarrow Y2 \rightarrow Y1$ Y1 : G258 \rightarrow G257--- \rightarrow G1 Source Scan : X5 \rightarrow X4 \rightarrow X3 \rightarrow X2 \rightarrow X1 X1: S600 \rightarrow S599--- \rightarrow S1

5.2 LED INTERFACE CONNECTOR

Connector: MSB24038P5A or Equivalent

PIN NO.	SYMBOL	FUNCTION	REMARK
1	VCC	12V	
2	GND	GND	
3	Enable	5V-On / 0V-Off	
4	Dimming	Á₩₩₩₩₽₩Μ[¦Á0E;æ4[*ÁÖã[{ã]*	
5	NC	Not connect	

6. BLOCK DIAGRAM

7.ABSOLUTE MAXIMUM RATINGS

7.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	MIN.	MAX.	UNIT	REMARK
Power Voltage	VDD	-0.3	3.96	V	

7.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

ITEM	OPERATING		STOF	RAGE	REMARK	
I I EM	MIN.	MAX.	MIN.	MAX.	REMARK	
Ambient Temperature(°C)	-20	70	-30	80	Note 1,2,3	
Humidity(% RH)	10	85	10	95	Note 4	

Note 1 : The response time will become lower when operated at low temperature.

Note 2 : Background color changes slightly depending on ambient temperature.

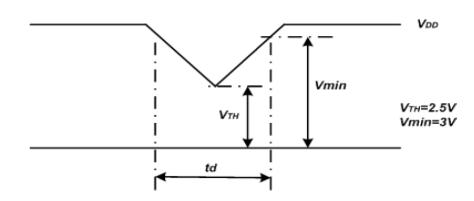
Note 3 : Operation Ta=70°C & -20°C \leq 240Hrs.

Note 4 : Operation Ta=40 $^{\circ}$ C & RH=85% \leq 240Hrs.

Note 5 :Please make sure to keep the temperature of LCD module is less than 70° C

8.ELECTRICAL CHARACTERISTICS 8.1 ELECTRICAL CHARACTERISTICS OF LCD

						Ta=25°(
ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	REMARK
	VDD	3.0	3.3	3.6	V	-
	IDD	-	_	0.25	А	3.3V/Black pattern
Power Voltage For LCD	PDD	-	-	0.84	W	Black Pattern, 60Hz
	Irush	-	-	1.5	А	Note1
	VDDrp	-	-	200	[mV]p-p	Note2


Note 1: Measure Condition

Note 2: VDD Power Dip Condition

VDD rising time

0.5ms

90%

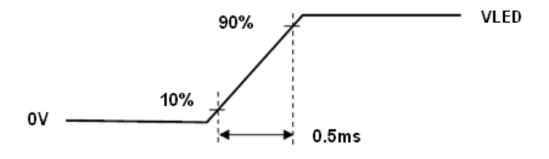
10%

If VTH $<\!VDD\!\le\!Vmin$, then td $\le\!10ms$; When the voltage return to normal our panel must revive automatically.

0V

8.2 BACKLIGHT CHARACTERISTICS

Item Symbol Min. Max. Units Note Тур. V LED Input Voltage V LED 10.8 12 12.6 (2),(3)LED Power $P_{_LED}$ (2.88)W (2),(3) --Consumption V LED Forward Voltage V_{F} 3.2 3.6 2.8 LED Forward Current \mathbf{I}_{F} 20 30 mΑ -5 5.5 High 4.5 **PWM Signal Voltage** V_{PWM_EN} V Low 0 0.4 -(2) High 2.0 5 5.5 LED Enable Voltage VLED EN V Low 0 0.4 -FPWM Input PWM Frequency 100 1K Ηz -LED Life Time LT 30,000 Hours (1)(2)PWM 5 100 % Duty Ratio _ (2)


Ta=25°C

3.3V

Note (1) The LED life time define as the estimated time to 50% degradation of initial luminous.

Note (2) Operating temperature 25°C, humidity 55%RH.

Note (3) A higher LED power supply voltage will result in better power efficiency. Keep the V_{LED} between 12V and 12.6V is strongly recommended.

9.OPTICAL CHARACTERISTICS

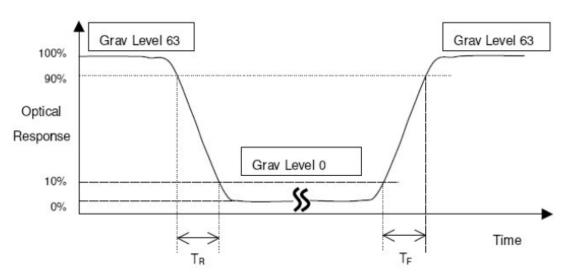
Ta=25℃

ITEM		SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	REMARK
Contrast Ratio		CR		700	900	-		Note (1)
		TR		-	-	-	ms	
Response Tim	e	TF		-	-	-	ms	Note (2)
		TR+TF		-	16	-	ms	
	White	Wx	Viewing	0.255	0.305	0.355	-	
	White	Wy	Normal	0.275	0.325	0.375	-	
	Red	Rx	Angle	0.601	0.631	0.661	-	
C1	Keu	Ry	Θx=Θy=0°	0.324	0.354	0.384	-	Note (4)
Chromaticity	Green	Gx		0.288	0.318	0.348	-	
		Gy		0.600	0.630	0.660	-	
	Blue	Bx		0.117	0.147	0.177	-	
		By		0.045	0.075	0.105	-	
		Θx+	Viewing	70	75	-		
Viewing	Hor.	Θx-	Angle	70	75	-	Deg.	
Angle	Ver.	$\Theta_{\rm Y}+$	$\Theta x = \Theta_y = 0^\circ$	60	70	-		Note (3)
		Θγ-	$CR \ge 10$	70	75	-		
Luminance		L	PWM=100%	(220)	280	-	cd/m2	
Uniformity				75	80		%	Note (5)

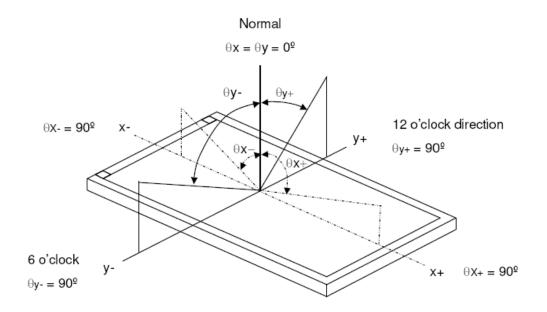
*Note (1) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

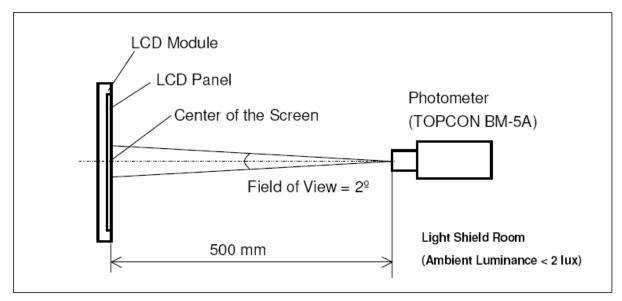

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

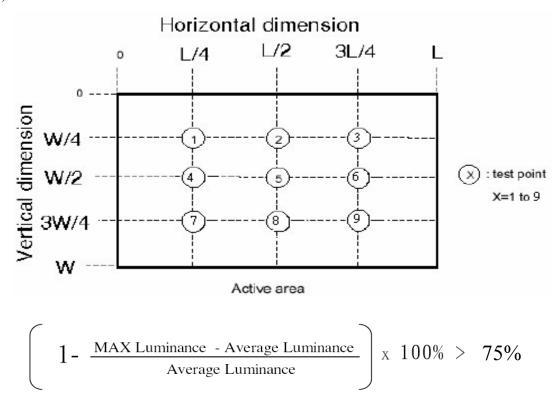

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).

*Note (2) Definition of Response Time (T_R, T_F):



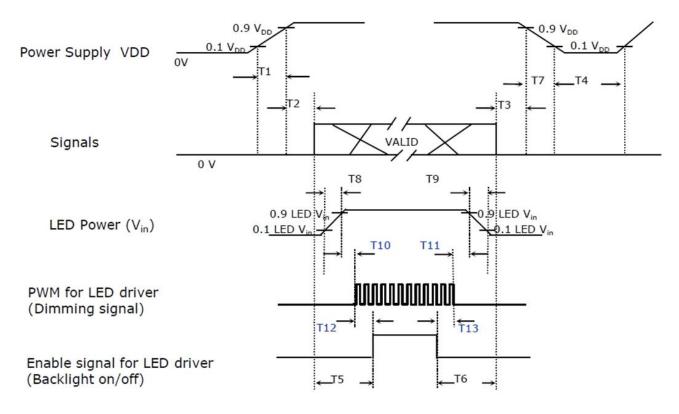
*Note(3) Definition of Viewing Angle



*Note (4) Measurement Set-Up:

The LCD module should be stabilized at a given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

*Note (5)



10. TIMING SPECIFICATIONS

10.1 POWER SIGNAL SEQUENCE

VDD power on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.a. Power on sequence:

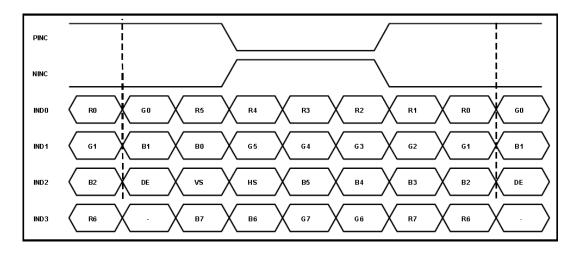
VDD rising time from 10% to 90%T10.5-10msDelay from VDD to valid data at power ONT230-50msDelay from valid data OFF to VDD OFF at powerT30-50msOFFVDD OFF time for windows restartT4500msDelay from valid data to B/L enable at power ONT5200ms					
Items	Symbol	MIN	TYP	MAX	Unit
VDD rising time from 10% to 90%	T1	0.5	-	10	ms
Delay from VDD to valid data at power ON	T2	30	-	50	ms
	Т3	0	-	50	ms
VDD OFF time for windows restart	T4	500	-	-	ms
Delay from valid data to B/L enable at power ON	T5	200	-	-	ms
Delay from valid data off to B/L disable at power Off	T6	200	-	-	ms
VDD falling time from 90% to 10%	T7	0.5	-	10	ms
LED Vin rising time from 10% to 90%	T8	0.5	-	10	ms
LED Vin falling time from 90% to 10%	Т9	0.5	-	10	ms
Delay from LED driver Vin rising time 90% to PWM ON	T10	0	-	-	ms
Delay from PWM Off to LED driver Vin falling time 10%,Must keep rule	T11	0	-	-	ms
Delay from PWM ON to B/L Enable ON, Must keep rule	T12	0	-	-	ms
Delay from B/LEnable Off to PWM Off	T13	0	-	-	ms

10.2 TIMING CHARACTERISTICS

10.2.1. Interface Timings


Parameter	Symbol	Unit	Min.	Тур.	Max.
LVDS Clock Frequency	Fclk	MHz	(52)	(65)	(71)
H Total Time	HT	Clocks	(1,114)	(1,344)	(1,400)
H Active Time	HA	Clocks	1,024	1,024	1,024
H Blanking Time	HBL	Clocks	(90)	(320)	(376)
V Total Time	VT	Lines	(778)	(806)	(845)
V Active Time	VA	Lines	768	768	768
V Blanking Time	VBL	Lines	(10)	(38)	(77)
Frame Rate	Vsync	Hz	55	60	65

Note: H Blanking Time and V Blanking Time can not be changed at every frame.


10.3 TIMING DIAGRAM OF INTERFACE SIGNAL

LVDS Mapping

6 bit LVDS input

8 bit LVDS input

11. RELIABILITY TEST

ENVIRONMENTAL TEST				
NO.	ITEM	CONDITIONS	TIME PERIOD	REMARK
1	High Temperature Storage	80°C	240HRS	
2	Low Temperature Storage	-30±3°C	240HRS	
3	High Temperature Operation	70°C	240HRS	
4	Low Temperature Operation	-20°C	240HRS	
5	Temperature Cycle	-20°C ←25°C →70°C (30min) (5min) (30min)	100CYCLE	
6	High Temperature Humidity Operation	40℃ 85%RH	240HRS	

NOTE (1): a. THE MODULE SHOULD WORK PROPERLY.

b. BEFORE AND AFTER FUNCTION TEST, THE DIFFERENCE OF CONSUMPTIVE CURRENT.SHOULD BE WITHIN 10%

NOTE (2) : a. THE MODULE SHOULD WORK PROPERLY.

b. THE MODLUE WON'T BE DEFORMATIVE, COLOR CHANGEABLE OR BROKEN.

c. THE MODULES CAN'T BE APART.

12.PRECAUTIONS FOR USE

12.1 Safety

- (1) Do not swallow any liquid crystal, even if there is no proof that liquid crystal is poisonous.
- (2) If the LCD panel breaks, be careful not to get liquid crystal to touch your skin.
- (3) If skin is exposed to liquid crystal, wash the area thoroughly with alcohol or soap.
- 12.2 Storage Conditions
- Store the panel or module in a dark place where the temperature is 23±5°C and thehumidity is below 50±20%RH.
- (2) Store in anti-static electricity container.
- (3) Store in clean environment, free from dust, active gas, and solvent.
- (4) Do not place the module near organics solvents or corrosive gases.
- (5) Do not crush, shake, or jolt the module.
- 12.3 Handling Precautions
- (1) Avoid static electricity which can damage the CMOS LSI.
- (2) The polarizing plate of the display is very fragile. So, please handle it very carefully.
- (3) Do not give external shock.
- (4) Do not apply excessive force on the surface.
- (5) Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the Surface of plate.
- (6) Do not use ketonics solvent & Aromatic solvent, use with a soft cloth soaked with a cleaning naphtha solvent.
- (7) Do not operate it above the absolute maximum rating.
- (8) Do not remove the panel or frame from the module.
- (9) When the module is assembled, it should be attached to the system firmly,Be careful not to twist and bend the module.
- (10) Wipe off water droplets or oil immediately . If you leave the droplets for a long time, staining and discoloration may occur.
- (11) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs or clothes, it must be washed away thoroughly with soap.
- 12.4 Warranty
 - (1)Acceptance inspection period

The period is within one month after the arrival of contracted commodity at the buyer's factory site.

(2) Applicable warrant period

The period is within 12 months since the date of shipping out under normal using and storage conditions.