

(V) Preliminary Specification() Final Specification

Module	17.0" SXGA Color TFT-LCD
Model Name	G170EG01 V1

Customer	Date	Checked & Approved by	Date	
	_	Debbie Chiu	2011/01/24	
Approved by		Prepared by		
		Gimmy Tsai	2011/01/24	
Note: This Specification is subject to a notice.	change without	Desktop Display Business Group / AU Optronics corporation		

Contents

1. Handling Precautions	. 4
2. General Description	. 5
2.1 Display Characteristics	. 5
2.2 Optical Characteristics	. 6
3. Functional Block Diagram	10
4. Absolute Maximum Ratings	11
4.1 TFT LCD Module	11
4.2 Backlight Unit	11
4.3 Absolute Ratings of Environment	11
5. Electrical characteristics	12
5.1 TFT LCD Module	12
5.2 Backlight Unit	14
6. Signal Characteristic	15
6.1 Pixel Format Image	15
6.2 The Input Data Format	15
6.3 Signal Description	16
6.4 Timing Characteristics	18
6.5 Power ON/OFF Sequence	20
7. Connector & Pin Assignment	22
7.1 TFT LCD Module	22
7.2 Backlight Unit	23
8. Reliability Test	24
9. Label and Packaging	25
9.1 Shipping Label (on the rear side of TFT-LCD display)	25
9.2 Carton Package	25
10. Mechanical Characteristics	26

Record of Revision

Version and Date	Page	Old desc	ription	New Desc	Remark	
0.1 2011/01/12	All	First Edition for Cu	stomer	All		
0.2 2011/01/14	5	350 (center,Typ)@)7.5 mA	350		
	24	Items Temperature Humidity Bias (THB)	Required Condition Ta= 50°C , 90%RH, 300hours	Items Temperature Humidity Bias (THB)	Required Condition Ta= 50°C , 80%RH, 300hours	
0.3 2011/01/24	11	100 90 90 40 40 40 40 40 40 40 40 40 40 40 40 40	T=40°C, r T=5 20 40 50 60		9°°C 7 T=40°C,H=95% 7 T=50°C,H=55% T=70°C 0 50 60 70 80 85	
	26	Thickness= 15.8 m	m	Thickness= 18.0 mn	ı	

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the LED light bar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.

2. General Description

This specification applies to the 17 inch Color TFT-LCD Module G170EG01 V1. The display supports the SXGA+ (1280(H) x 1024(V)) screen format and 16.7M colors (RGB 6-bits+Hi-FRC data).All input signals are 2 Channel LVDS interface compatible.

This module does not contain an inverter card for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 $^\circ \! \mathbb{C}$ condition:

Items	Unit	Specifications
Screen Diagonal	[mm]	432 (17.0")
Active Area	[mm]	337.920(H) × 270.336(V)
Pixels H x V		1280 × 3(RGB) × 1024
Pixel Pitch	[mm]	0.264(per one triad) × 0.264
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		Normally White
White Luminance	[cd/m ²]	350
Contrast Ratio		1000 : 1 (Typ)
Optical ResponseTime	[msec]	5 (Typ)
Nominal Input Voltage VDD	[Volt]	+5.0 (Typ)
Power Consumption (VDD line + LED line)	[Watt]	22 W (Typ.) (with LED driver, all black pattern)
Weight	[Grams]	1800 Тур.
Physical Size (H x V x D)	[mm]	358.5(H) x 296.5(V) Typ. x 18.0(D) Max.
Electrical Interface		Dual Channel LVDS
Surface Treatment		Anti-glare type, Hardness 3H
Support Color		16.7M colors (RGB 6-bits +Hi-FRC data)
Temperature Range Operating Storage (Non-Operating)	[°C] [°C]	-30 to +85 -30 to +85
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

ltem	Unit	Condi	tions	Min.	Тур.	Max.	Note
		Horizontal CR = 10	(Right) (Left)	70 70	85 85	-	
Viewing Angle	[degree]	Vertical CR = 10	(Up) (Down)	70 70	80 80	-	1
		Horizon CR = 5	(Right) (Left)	75 75	85 85	-	
		Vertical CR = 5	(Up) (Down)	75 75	85 85	-	
Luminance Uniformity	[%]	9 Points		75	80	-	2, 3
		Rising		-	3.5	6	
Optical Response Time	[msec]	Falling	-	1.5	3	4, 6	
		Rising + Fall	-	5	9		
		Red x	TBD	TBD	TBD		
		Red y	TBD	TBD	TBD		
		Green x		TBD	TBD		TBD
Color / Chromaticity		Green y		TBD	TBD	TBD	4
(CIE 1931)		Blue x		TBD	TBD	TBD	4
		Blue y		TBD	TBD	TBD	
		White x		0.283	0.313	0.343	
		White y		0.299	0.329	0.359	
White Luminance (At LED= 110mA)	[cd/m ²]			280	350	-	4
Contrast Ratio				600	1000	-	4
Cross Talk (At 75Hz)	[%]			-	-	1.5	5
Flicker	[dB]			-	-	-20	7

Optical Equipment: BM-5A, BM-7, PR880, or equivalent

Product Specification

AU OPTRONICS CORPORATION

Note 1: Definition of viewing angle

Viewing angle is the measurement of contrast ratio ≥ 10 , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

Note 2:9 points position

Note 3: The luminance uniformity of 9 points is defined by dividing the maximum luminance values by the minimum test point luminance

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Note 5: Definition of Cross Talk (CT) CT = | YB - YA | / YA × 100 (%)

Where

YA = Luminance of measured location without gray level 0 pattern (cd/m2)

YB = Luminance of measured location with gray level 0 pattern (cd/m2)

Note 6: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "Full Black" to "Full White" (rising time), and from "Full White" to "Full Black "(falling time), respectively. The response time is interval between the 10% and 90% of amplitudes. Please refer to the figure as below.

Note 7: Subchecker Pattern

Method: Record dBV & DC value with (WESTAR)TRD-100

Flicker (dB) =
$$20\log \frac{AC \text{ Level}(at 30 \text{ Hz})}{DC \text{ Level}}$$

3. Functional Block Diagram

The following diagram shows the functional block of the 17.0 inches Color TFT-LCD Module:

PCBA Connector:

LED Driver Connector:

JAE FI-XB30SSL-HF15 Or Compatible 3806K-F06Y-03R Or Compatible

4. Absolute Maximum Ratings

Absolute maximum ratings of the module is as following:

4.1 TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	VIN	-0.3	6	[Volt]	Note 1,2

4.2 Backlight Unit

ltem	Symbol	Min	Мах	Unit	Conditions
LED Current	ICFL	-	110	[mA] rms	Note 1,2

4.3 Absolute Ratings of Environment

ltem	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	-30	+85	[°C]	
Operation Humidity	HOP	8	90	[%RH]	Noto 2
Storage Temperature	TST	-30	+85	[°C]	Note 3
Storage Humidity	HST	8	90	[%RH]	

Note 1: With in Ta (25 $^\circ\!\mathrm{C}$)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

5. Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows:

Symble	Parameter	Min.	Тур.	Max.	Unit	Condition
VCC	Logic/LCD Drive Voltage	4.5	5.0	5.5	[Volt]	±10%
ICC	Input Current	-	1.05	1.16	[A]	Vin=5V , All Black Pattern, at 75Hz
lRush	Inrush Current	-	-	3.0	[A]	Note
PCC	VCCPower	-	5.25	5.8	[Watt]	Vin=5V , All Black Pattern, at 75Hz
VCCrp	Allowable Logic/LCD Drive Ripple Voltage	_	-	200	[mV] p-p	With panel loading

Note: Measurement conditions:

5.1.2 Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when Vin is off It is recommended to refer the specifications of SN75LVDS82DGG (Texas Instruments) in detail.

Each signal characteristics are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition	
	Differential Input High				- +100	[m]/]	VICM = 1.2V
VIH	Threshold	-	+100	[mv]		Note	
VTI	Differential Input Low	100			[mV]	[]/]	VICM = 1.2V
VIL	Threshold	-100	-	-		Note	
VID	Input Differential Voltage	100	400	600	[mV]	Note	
VICM	Differential Input Common	.10	.10	4.5	D (1	$VTH/VTL = \pm 100MV$	
	Mode Voltage	+1.0	+1.2	+1.5	[v]	Note	

Note: LVDS Signal Waveform

document version 0.3

13/26

NUO

Parameter guideline LED

Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark
V _{LED}	Input Voltage	10.8	12	12.6	Volt	
I _{LED}	Input Current	-	1.18	-	A	100% Dimming
PLED	Power Consumption	-	14.16	-	Watt	100% Dimming
	Inrush Current	-	-	5.1	A	V_{LED} rising time ~ 470us
F _{Р₩М}	PWM Dimming Frequency	200	-	20K	Hz	
V	Swing Voltage High	4.5	5.0	5.5	Volt	Noto 1.2
¥ PW/M DIM	Swing Voltage Low	-	-	0.8	Volt	NOLE 1,2
D _{PWM}	Dimming Duty Cycle	10	-	100	%	
I _F	LED Forward Current	-	110	-	mA	Ta = 25℃
V	On Control Voltage	3.0	3.3	5.5	Volt	Noto 3, 4
VLED ON/OFF	Off Control Voltage	-	-	0.8	Volt	11010 3, 4
Operating Life		50000	-	-	Hrs	Note 5, 6

Following characteristics are measured under stable condition at 25°C (Room Temperature)

- Note 1: PWM dimming function can be operated by PWM signal. PWM duty cycle can adjust white Luminance. (PWM High: ON and PWM Low: OFF)
- Note 2: PWM signal can not be floating and pull-down to ground when waiting.
- Note 3: Enable ($V_{LED On/Off}$) must be turned on late than V_{LED} and PWM Signal.
- Note 4: Enable ($V_{LED On/Off}$) must be turned off early than V_{LED} and PWM Signal.
- Note 5: If G170EG01 V1 module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.
- Note 6: Operating life means brightness goes down to 50% initial brightness. Minimum operating life time is estimated data.

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

6.2 The Input Data Format

Note1: Normally, DE, VS, HS on EVEN channel are not used. Note2: Please follow PSWG. Note3: 8-bit in

document version 0.3

15/26

6.3 Signal Description

The module using a pair of LVDS receiver SN75LVDS82(Texas Instruments) or compatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS83(negative edge sampling) or compatible. The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

PIN #	SIGNAL NAME	DESCRIPTION
1	RxO0-	Negative LVDS differential data input (Odd data)
2	RxO0+	Positive LVDS differential data input (Odd data)
3	RxO1-	Negative LVDS differential data input (Odd data)
4	RxO1+	Positive LVDS differential data input (Odd data)
5	RxO2-	Negative LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)
6	RxO2+	Positive LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)
7	GND	Power Ground
8	RxOC-	Negative LVDS differential clock input (Odd clock)
9	RxOC+	Positive LVDS differential clock input (Odd clock)
10	RxO3-	Negative LVDS differential data input (Odd data)
11	RxO3+	Positive LVDS differential data input (Odd data)
12	RxE0-	Negative LVDS differential data input (Even data)
13	RxE0+	Positive LVDS differential data input (Even data)
14	GND	Power Ground
15	RxE1-	Negative LVDS differential data input (Even data)
16	RxE1+	Positive LVDS differential data input (Even data)
17	GND	Power Ground
18	RxE2-	Negative LVDS differential data input (Even data)
19	RxE2+	Positive LVDS differential data input (Even data)
20	RxEC-	Negative LVDS differential clock input (Even clock)
21	RxEC+	Positive LVDS differential clock input (Even clock)
22	RxE3-	Negative LVDS differential data input (Even data)
23	RxE3+	Positive LVDS differential data input (Even data)
24	GND	Power Ground
25	GND	Power Ground (For AUO test Aging+HVS mode)
26	NC	No contact
27	GND	Power Ground
28	vcc	+5.0V Power Supply
29	vcc	+5.0V Power Supply
30	vcc	+5.0V Power Supply

document version 0.3

G170EG01 V1

AU OPTRONICS CORPORATION

Note 1: Definition of viewing angle

Viewing angle is the measurement of contrast ratio ≥ 10 , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

Note 2: 9 points position

Note 3: The luminance uniformity of 9 points is defined by dividing the maximum luminance values by the minimum test point luminance

$$\delta_{W9} = \frac{\text{Minimum Luminance of 9 points}}{\text{Maximum Luminance of 9 points}}$$

6.4 Timing Characteristics

6.4.1 Timing Characteristics

Basically, interface timings described here is not actual input timing of LCD module but output timing of SN75LVDS82DGG (Texas Instruments) or equivalent.

Signal	ltem	Symbol	Min	Тур	Max	Unit
	Period	Τv	1034	1066	2048	Th
Vertical	Active	Tdisp(v)	1024	1024	1024	Th
Section	Blanking	Tbp(v)+Tfp(v)+PWvs	10	42	1024	Th
	Period	Th	750	844	2048	Tclk
Horizontal	Active	Tdisp(h)	640	640	640	Tclk
Section	Blanking	Tbp(h)+Tfp(h)+PWhs	110	204	1408	Tclk
Clock	Period	Tclk	14.81	18.52	25	ns
	Frequency	Freq	40	54	70	MHz
Frame rate	Frame rate	F	49	60	76	Hz

Note : DE mode only

document version 0.3

Product Specification

G170EG01 V1

AU OPTRONICS CORPORATION

6.4.2 Timing Diagram

6.5 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power Sequence Timing

Deremeter	Value			Unit
Parameter	Min.	Тур.	Max.	Unit
T1	0.5	-	10	[ms]
T2	30	40	50	[ms]
Т3	200	-	-	[ms]
T4	0.5	-	10	[ms]
Т5	10	-	-	[ms]
Т6	10	-	-	[ms]
Τ7	0	-	-	[ms]
Т8	10	-	-	[ms]
Т9	-	-	10	[ms]
T10	110	_	_	[ms]
T11	0	16	50	[ms]

document version 0.3

20/26

G170EG01 V1

_ _ _ _ _

Product Specification

AU OPTRONICS CORPORATION

T12	_	-	10	[ms]
T13	1000	_	_	[ms]

NO

7. Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

7.1.1 Connector

Connector Name / Designation	Interface Connector	
Manufacturer	JAE or Compatible	
Type Part Number	FI-XB30SSL-HF15 or Compatible	
Mating Housing Part Number	JAE FI-X30HL or Compatible	

7.1.2 Pin Assignment

Pin#	Signal Name	Pin#	Signal Name
1	RxOIN0-	2	RxOIN0+
3	RxOIN1-	4	RxOIN1+
5	RxOIN2-	6	RxOIN2+
7	GND	8	RxOCLKIN-
9	RxOCLKIN+	10	RxOIN3-
11	RxOIN3+	12	RxEIN0-
13	RxEIN0+	14	GND
15	RxEIN1-	16	RxEIN1+
17	GND	18	RxEIN2-
19	RxEIN2+	20	RxECLKIN-
21	RxECLKIN+	22	RxEIN3-
23	RxEIN3+	24	GND
25	GND (AGMODE+HVS)	26	NC
27	GND	28	VCC
29	VCC	30	VCC

7.2 Backlight Unit

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	Lamp Connector
Manufacturer	E&T or compatible
Connector Model Number	3806K-F06Y-03R or compatible
Mating Connector Model Number	H208K-P06N-02B or compatible

7.2.1 Signal for Lamp connector

Pin#	Symbol	Signal Name
1	VCC	12V
2	VCC	12V
3	GND	GND
4	GND	GND
5	Display on	5V-On / 0V-Off
6	Dimming	PWM Dimming

G170EG01 V1

AU OPTRONICS CORPORATION

Environment test conditions are listed as following table.

Items	Required Condition	Note	
Temperature Humidity Bias (THB)	$Ta = 50^{\circ}C$, 80%RH, 300hours		
High Temperature Operation (HTO)	Ta= 85°C , 300hours		
Low Temperature Operation (LTO)	$Ta = -30^{\circ}C$, 300hours		
High Temperature Storage (HTS)	Ta= 85°C , 300hours		
Low Temperature Storage (LTS)	Ta= -30°C , 300hours		
Vibration Test (Non-operation)	Acceleration: 1.5 G Wave: Random Frequency: 10 - 200 - 10 Hz Sweep: 30 Minutes each Axis (X, Y, Z)		
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)		
Drop Test	Height: 60 cm, package test		
Thermal Shock Test (TST)	-20 $^{\circ}$ C/30min, 60 $^{\circ}$ C/30min, 100 cycles	1	
On/Off Test	On/10sec, Off/10sec, 30,000 cycles		
ESD (ElectroStatic Discharge)	Contact Discharge: \pm 8KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point.	0	
	Air Discharge: \pm 15KV, 150pF(330 Ω) 1sec 8 points, 25 times/ point.		
Altitude Test	Operation:10,000 ft Non-Operation:30,000 ft		

- Note 1: The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.
- Note 2: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures.

9. Label and Packaging

9.1 Shipping Label (on the rear side of TFT-LCD display)

The shipping label format is shown as below.

9.2 Carton Package

Max capacity : 8 TFT-LCD module per carton (8pcs.1 layers) Max weight: TBD kg per carton Outside dimension of carton:434(L)mm*278(W)mm*390(H)mm

document version 0.3

25/26

Product Specification

AU OPTRONICS CORPORATION

10. Mechanical Characteristics

document version 0.3

26/26