

Product Specification

Chefree Technology Corp.

15.0" XGA High brightness color TFT-LCD module

Model: CH150CLGL-HB4

Date: Mar. 05th, 2013

Note: This specification is subject to change without notice

Customer :	
	Date :
Approved	Prepared
Date	Date:

Contents

- 1. Handling Precautions
- 2. General Description
- 3. Functional Block Diagram
- 4. Absolute Maximum Ratings
 - 4.1 Absolute Ratings of TFT LCD Module
 - 4.2 Absolute Ratings of Backlight Unit
 - 4.3 Absolute Ratings of Environment
- 5. Electrical characteristics
 - 5.1 TFT LCD Module
 - 5.2 Backlight Unit
- 6. Signal Characteristic
 - 6.1 Pixel Format Image
 - 6.2 The Input Data Format
 - 6.4 Interface Timing
 - 6.5 Power ON/OFF Sequence
- 7. Connector & Pin Assignment
 - 7.1 TFT LCD Module
 - 7.2 Backlight Unit
- 8. Reliability Test
- 9. Shipping Label
- 10. Mechanical Characteristic

RECORD OF REVISION

Versi	ion and Date	Page	Old description	New description	Remark
0.1	2013/03/05	All	First Edition for customer		
			3		

Product Specification

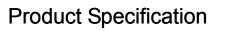
1. HANDLING PRECAUTIONS

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 10) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.

Product Specification

2. General Description

2.1, Overview


CH150CLGL-HB4 is a Color Active Matrix Liquid Crystal Display composed of a TFT-LCD display, a driver circuit, and a backlight system. The screen format is intended to support XGA(1024(H) x 768(V)) screen and 16.2M (RGB 8-bits) or 262k (RGB 6-bits). All input signals are LVDS interface compatible. All the design rules of this module can correspond to PSWG standard.

2.2 Features

- Sunlight readable display, 1500nits.
- LED backlight
- Wide temperature operating
- RoHS Compliance

2.3 Application

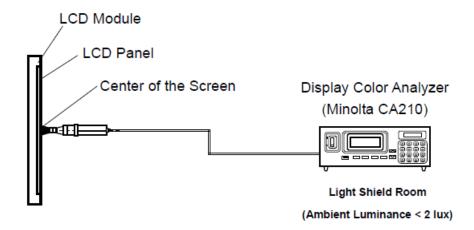
Industrial Application.

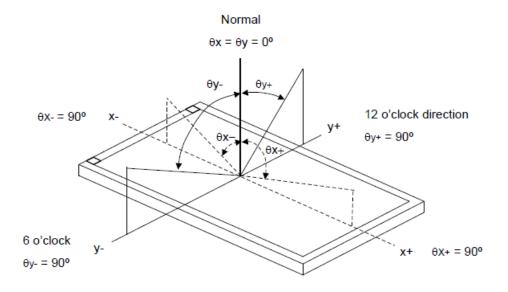
2.4 Display Specifications

Items	Unit	Specification
Screen Diagonal	inch	15
Active Area	mm	304.128(H) x 228.096(V)
Pixels H x V	pixels	1024x3(RGB) x 768
Pixels Pitch	um	297 (per one triad) x 297
Pixel Arrangement		RGBW Rectangle
Display mode		TN mode, normally white
White luminance (center)	Cd/m ²	1500 (Typ.)
Contrast ratio		700 (Typ.)
Optical Response Time	msec	8 ms (Typ. on/off)
Normal Input Voltage VDD	Volt	3.3
Power Consumption	Watt	18.6
(VDD Line + LED L Lines)		
Weight	Grams	1000 typ.
Physical size	mm	326.5(H)x 253.5(V) x 13.1(D) (typ.)
Electrical Interface		1 Channel LVDS
Support Colors		16.2 M colors (RGB 8-bits)
		262 k color (RGB 6-bits)
Surface Treatment		Anti-Glaire (AG)
Temperature range		
Operating	°C	-30 ~ 85
Storage (Shipping)	°C	-30 ~ 85
RoHS Compliance		RoHS Compliance

2.5 Optical Characteristics

The following optical characteristics are measured under stable condition at 25 $^{\circ}\text{C}$

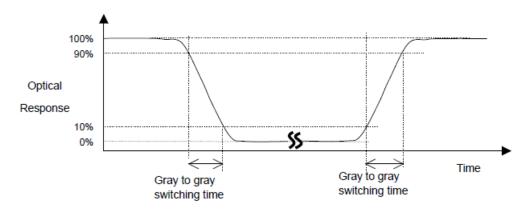

Items	Unit	Conditions	Min.	Тур.	Max.	Note
Viewing angle	Deg.	Horizontal (Right) CR=10 (Left)	140	160		2
viewing angle	Deg.	Vertical (Up) CR=10 (Down)	120	140		
Contrast Ratio		Normal Direction	400	700		3
		Raising time (T _{rR})		5.7		
Response Time	msec	Falling time (T _{rF})		2.3		4
		Raising + Falling		8		
		Red x	-0.03	TBD	+0.03	
		Red y		TBD		
Color / Chromaticity		Green x		TBD		
Coordinates (CIE)		Green y		TBD		5
		Blue x		TBD		3
		Blue y	-	TBD		
Color coordinates		White x	-	0.313		
(CIE) White		White y	-	0.329		
Center Luminance	Cd/m ²		1200	1500		6
Luminance Uniformity	%		75			7
Crosstalk (in 60 Hz)	%				1.2	
Flicker	dB				-20	



Note 1: Measurement method

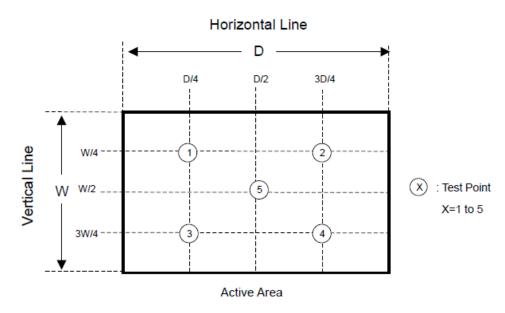
The LCD module should be stabilized at given temperature for 0.5 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note 2: Definition of viewing angle



Note 3: Contrast ratio is measured by Minolta CA210

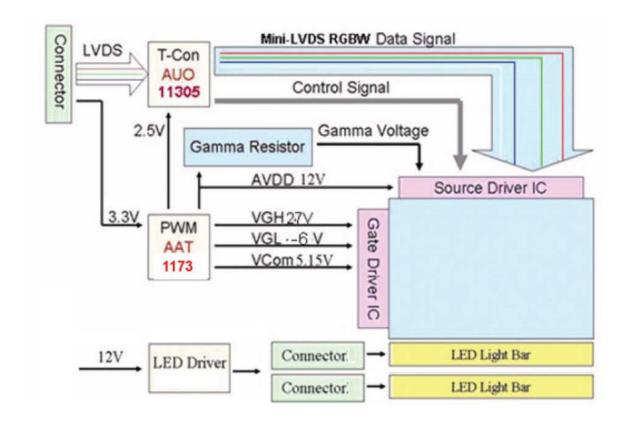
Note 4: Definition of Response time


The output signals of photo detector are measured when the input signals are changed from "Full Black" to "Full White" (rising time), and from "Full White" to "Full Black" (falling time), respectively. The response time is interval between the 10% and 90% of amplitudes. Please refer to the figure as below.

Note 5: Color chromaticity and coordinates (CIE) is measured by Minolta CA210

Note 6: Center luminance is measured by Minolta CA210

Note 7: Luminance uniformity of these 5 points is defined as below and measured by Minolta CA210



Uniformity = (Min. Luminance of 5 points) / (Max. Luminance of 5 points)

3. Functional Block Diagram

The following diagram shows the functional block of the 15 inches Color TFT-LCD Module:

4. Absolute Maximum Ratings

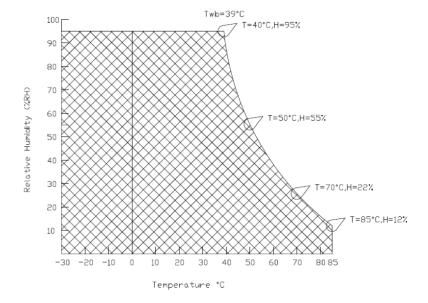
Absolute maximum ratings of the module are as following:

4.1 TFT LCD Module

Items	Symbol	Min	Max	Unit	Conditions
Logic/ LCD drive	Vin	-0.3	3.6	Volt	Note 1, 2
voltage					

4.2 Backlight unit

Items	Symbol	Min	Max	Unit	Conditions
LED Current	I LED		560	mA	Note 1, 2


4.3 Absolute Ratings of Environment

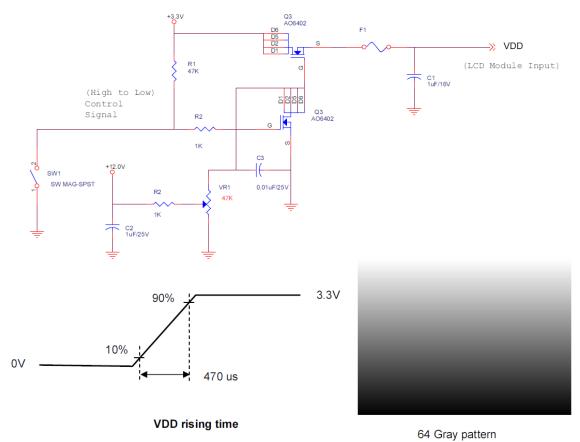
Items	Symbol		Values		Unit	Conditions	
items	Cymbol	Min.	Тур.	Max.	Offic	Conditions	
Operation temperature	T _{OP}	-30	-	85	°C		
Operation Humidity	H _{OP}	8		90	%	Note 3	
Storage temperature	T _{ST}	-30		85	٥C	14010 0	
Storage Humidity	H _{ST}	8		90	%		

Note 1: With in Ta= 25℃

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to IIS (Incoming Inspection Standard).

5. Electrical characteristics

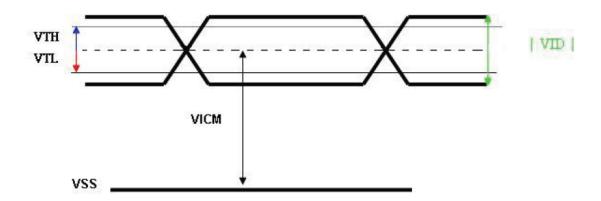

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows

Symbol	Parameter	Min	Тур.	Max	Unit	Conditions
VDD	Logic/ LCD Drive	3	3.3	3.6	Volt	+/- 10%
	Voltage					
IDD	Input current		1.0		mA	VDD=3.3V, All black
						pattern.
PDD	VDD power		3.3	3.6	W	VDD=3.3V, All black
						pattern.
IRush	Inrush current			3	Α	

Note 1: Measurement condition:


5.1.2 Signal Electrical Characteristics

Input signal shall be low or Hi-Z state when VDD is off.

Characteristics of each signal are as following:

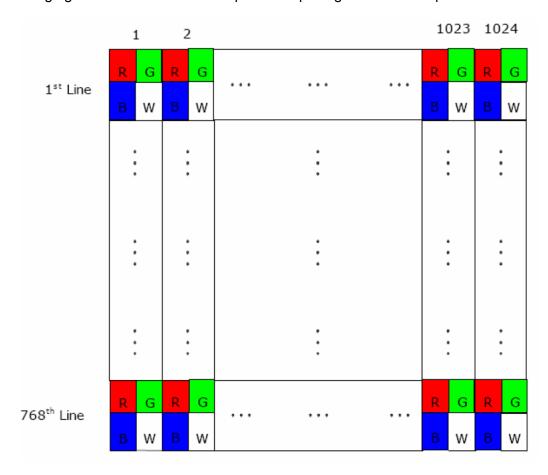
Symbol	Parameter	Min	Тур	Max	Unit	Condition
VTH	Differential Input			+100	mV	VICM = 1.2V
	High Threshold					
VTL	Differential Input	-100			mV	VICM = 1.2V
	Low Threshold					
VID	Input Differential	100	400	600	mV	
	Voltage					
VICM	Differential Input	+1.15	1,2	+1.45	V	VTH/VTL = 100mV
	Common Mode					
	Voltage					

Note: LVDS Signal Waveform.

5.2 Backlight Unit

Parameter guideline is under stable conditions at 25°C (Room Temperature):

Parameter	Min	Тур	Max	Unit	Note
LED voltage (VL)		19.8		[V]	2
LED current (IL)		380(TBD)	420	[mA]	2
LED power consumption		15		[W]	3
LED Life Time(LTLED)	50,000			[Hour]	1


- Note 1: The "LED lift time" is defined as the module brightness decrease to 50% original brightness that the ambient temperature is 25°C and typical LED Current at 380 mA (Long lifetime mode).
- Note 2: The LED driving condition is defined for each LED module.(7 LED Serial, a LED includes 6 Chips)
- Note 3: The variance of LED Light Bar power consumption is $\pm 10\%$. Calculator value for reference (IL × VL × 2 = PLED)

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

6.2 Scanning Direction:

The following figures show the image seen from the front view. The arrow indicates the direction of scan.

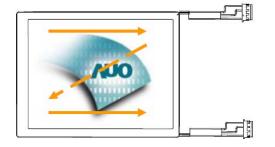


Fig. 1 Normal scan (Pin4, REV = Low or NC)

Fig. 2 Reverse scan (Pin4, REV = High)

6.3 Signal Description

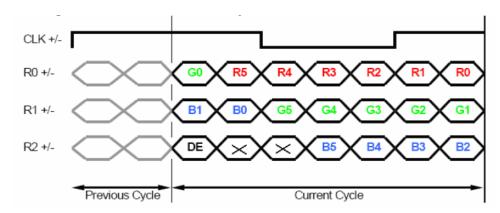
The module using a pair of LVDS receiver SN75LVDS82(Texas Instruments) or ompatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS83(negative edge sampling) or compatible. The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

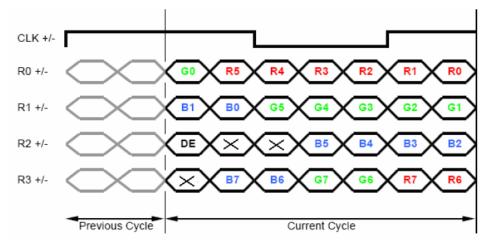
Input Sig	ınal Interfac	e
Pin No.	Symbol	Description
1	VDD	Power Supply, 3.3V (typical)
2	VDD	Power Supply, 3.3V (typical)
3	GND	Ground
4	REV	Reverse Scan [H: Enable; L/NC: Disable]*Note1,3
5	Rin0-	- LVDS differential data input
6	Rin0+	+ LVDS differential data input
7	GND	Ground
8	Rin1-	- LVDS differential data input
9	Rin1+	+ LVDS differential data input
10	GND	Ground
11	Rin2-	- LVDS differential data input
12	Rin2+	+ LVDS differential data input
13	GND	Ground
14	CIkIN-	- LVDS differential clock input
15	CIkIN+	+ LVDS differential clock input
16	GND	Ground
17	Rin3-	- LVDS differential data input *Note2
18	Rin3+	- LVDS differential data input *Note2
19	NC/GND	Reserved for AUO internal test. Please set it as NC or Ground.
20	SEL68	Selection for 6 bits/8bits LVDS data input[H/NC: 6bits, L: 8bits]*Note1,3

Note 1: Input signals shall be in low status when VDD is off.

Note 2: For 6bits input mode, pin 17 and pin 18 must be floated.

Note 3: High stands for "3.3V", Low stands for "GND", NC stands for "No Connection".




6.4 The Input Data Format

6.4.1 SEL68

SEL68 = "High" or "NC" for 6 bits LVDS Input

SEL68 = "Low" for 8 bits LVDS Input

Note1: Please follow PSWG.

Note2: R/G/B data 7:MSB, R/G/B data 0:LSB

Signal Name	Description	Remark
R7	Red Data 7	Red-pixel Data
R6	Red Data 6	
R5	Red Data 5	For 6Bits LVDS input
R4	Red Data 4	MSB: R5 ; LSB: R0
R3	Red Data 3	
R2	Red Data 2	For 8Bits LVDS input
R1	Red Data 1	MSB: R7; LSB: R0
R0	Red Data 0	
G7	Green Data 7	Green-pixel Data
G6	Green Data 6	
G5	Green Data 5	For 6Bits LVDS input
G4	Green Data 4	MSB: G5 ; LSB: G0
G3	Green Data 3	
G2	Green Data 2	For 8Bits LVDS input
G1	Green Data 1	MSB: G7 ; LSB: G0
G0	Green Data 0	

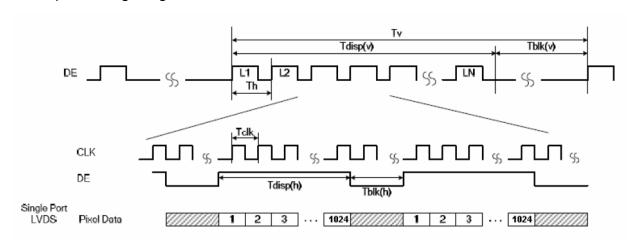
Product Specification

B7	Blue Data 7	Blue-pixel Data
B6	Blue Data 6	
B5	Blue Data 5	For 6Bits LVDS input
B4	Blue Data 4	MSB: B5 ; LSB: B0
B3	Blue Data 3	
B2	Blue Data 2	For 8Bits LVDS input
B1	Blue Data 1	MSB: B7 ; LSB: B0
B0	Blue Data 0	
RxCLKIN	LVDS Data Clock	The typical frequency is 65MHz. The signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.
DE	Data Enable Signal	When the signal is high, the pixel data shall be valid to be displayed.

Note: Output signals from any system shall be low or Hi-Z state when VDD is off.

6.5 Interface Timing

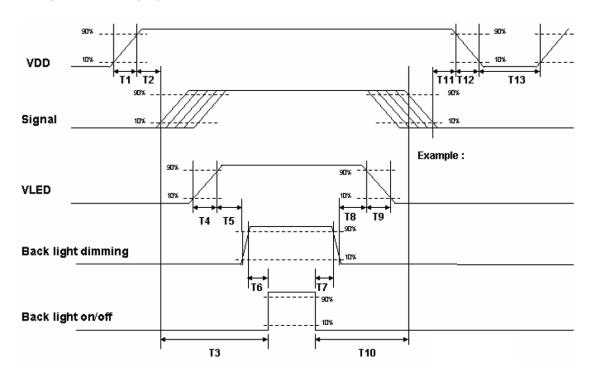
6.5.1 Timing Characteristics


Signal	Parameter Clock frequency		Symbol	Min.	Тур.	Max.	Unit
Clock Timing			1/ T _{Clock}	50	65	80	MHz
Vsync Timing	Vertical	Period	T _V	776	806	1023	
	Section	Active	T _{VD}	-	768	-	T _{Line}
		Blanking	T _{VB}	8	38	255	
Hsync Timing	Horizontal	Period	T _H	1074	1344	2047	
	Section	Active	T _{HD}	-	1024	-	T _{Clock}
		Blanking	T _{HB}	50	320	1023	
Frame Rate			F	50	60	75	Hz

Note: Frame rate is 60 Hz.

Note: DE mode.

Note: Typical value refer to VESA STANDARD


6.5.2 Input Timing Diagram

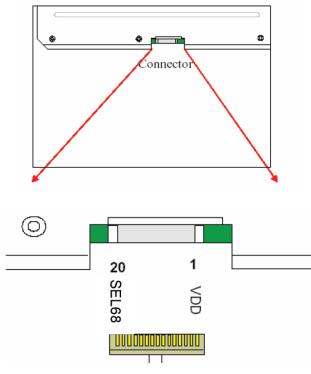
6.6 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as below. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power ON/OFF sequence timing

		•	_		
Parameter	Value			Units	
	Min.	Тур.	Max		
T1	0.5		10	ms	
T2	30	40	50	ms	
Т3	200			ms	
T4	0.5		10	ms	
T5	10			ms	
T6	10			ms	
T7	0			ms	
T8	10			ms	
Т9			10	ms	
T10	110			ms	
T11	0	16	50	ms	
T12			10	ms	
T13	1000			ms	

The above on/off sequence should be applied to avoid abnormal function in the display. Please make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.


7.0 Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module: LVDS interface connector

Connector Name / Designation	Signal Connector
Manufacturer	STM or compatible
Connector Model Number	MSB240420-E
Mating Housing Part Number	P240420 or compatible

Pin#	Signal Name	Pin#	Signal Name
1	VDD	2	VDD
3	GND	4	REV
5	Rin0-	6	Rin0+
7	GND	8	Rin1-
9	Rin1+	10	GND
11	Rin2-	12	Rin2+
13	GND	14	CIkIN-
15	ClkIN+	16	GND
17	Rin3-	18	Rin3+
19	NC/GND	20	SEL68

7.2 Backlight Unit: LED Connector

For Upper / Lower connectors

Pin No.	Symbol	I/O	Function	Remark
1	VLED+	Р	Power for LED backlight anode	White
2	VLED-	Р	Power for LED backlight cathode	Black

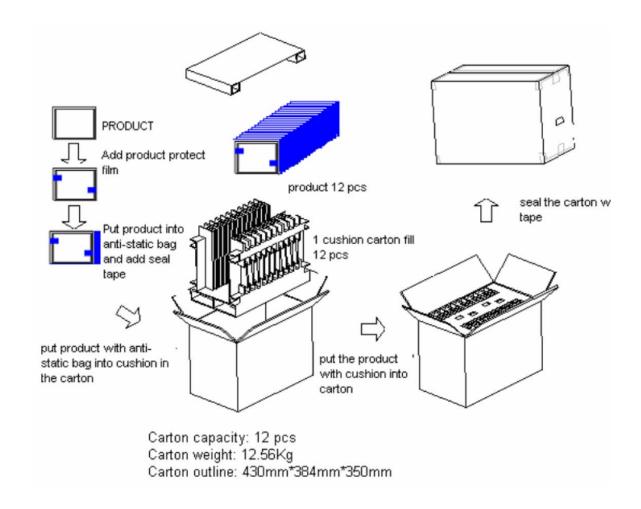
LED Light Bar Connector is used for the integral backlight system. The recommended model is BHSR-02VS-1 manufactured by JST.

8. Reliability Test

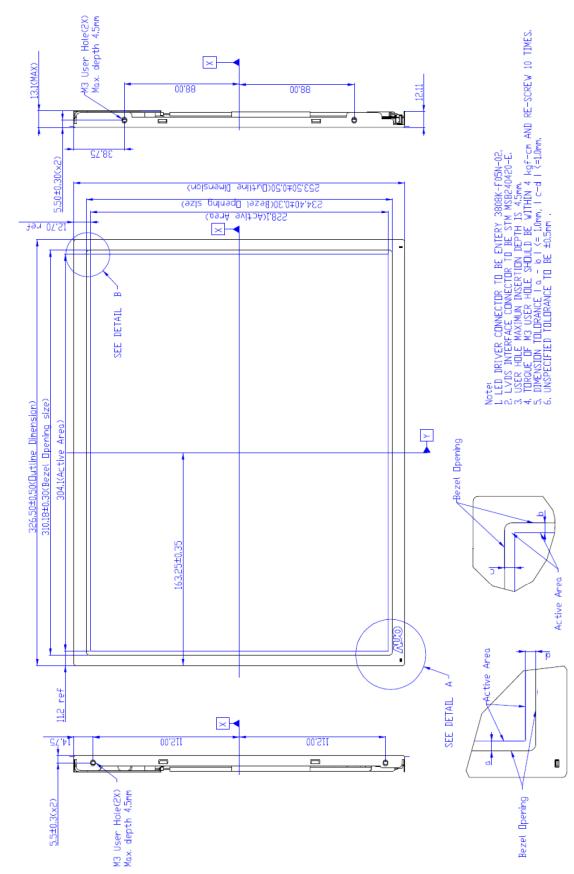
Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50℃, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 85℃, 50%RH, 300hours	3
Low Temperature Operation (LTO)	Ta= -30°C, 300hours	
High Temperature Storage (HTS)	Ta= 85℃, 300hours	
Low Temperature Storage (LTS)	Ta= -30°C, 300hours	
Drop Test	Height: 60 cm, package test	
Thermal Shock Test (TST)	-20°C/30min, 60°C/30min, 100 cycles	1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (ElectroStatic Discharge)	Contact Discharge: ± 8KV,	2
	150pF(330Ω) 1sec, 9 points, 25	
	times/ point.	
	Air Discharge: \pm 15KV, 150pF(330 Ω)	2
	1sec 9 points, 25 times/ point.	

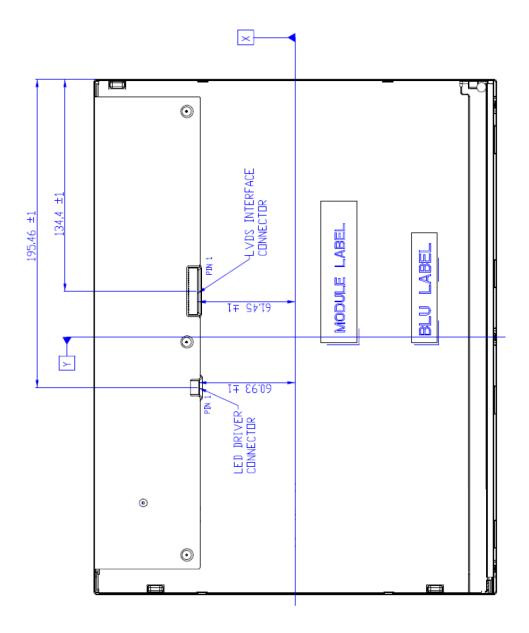
Note 1: The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.


Note 2: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures.

Note 3: The test items are tested by open frame type chassis.



Shipping Label & Package (TBD)



10. Mechanical Characteristic

NOTE: The Backlight connector is not shown