LCD / LCM SPECIFICATION

WINSTAR Display Co.,Ltd. 華凌光電股份有限公司

SPECIFICATION

CUSTOMER :

MODULE NO.: WH1602B-SLL-JWV#

APPROVED BY:		
(FOR CUSTOMER USE ONLY)	PCB VERSION:	DATA:

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY

VERSION	DATE	REVISED PAGE NO.	SUMMARY
0	2013/06/06		First issue

	nstar Displa 凌光電股份有限		MODLE NO :	
REC	ORDS OF REV	VISION		DOC. FIRST ISSUE
VERSION	DATE	REVISED PAGE NO.		SUMMARY
0	2013/06/06		Fi	rst issue

Contents

- 1.Module Classification Information
- 2.Precautions in use of LCD Modules
- **3.General Specification**
- 4. Absolute Maximum Ratings
- **5.**Electrical Characteristics
- **6.Optical Characteristics**
- 7.Interface Pin Function
- 8.Contour Drawing &Block Diagram
- 9. Character Generator ROM Pattern
- 10.Reliability
- 11.Backlight Information
- 12.Inspection specification
- 13. Material List of Components for RoHs
- 14.Recommendable Storage
- 15.Other

1.Module Classification Information

W	<u>H</u>	<u>1602</u>	<u>B</u>	_	<u>S</u>	L	L	 <u>JWV#</u>
1	2	3	4		5	6	Ø	8

① Brand: WINSTAR DISPLAY CORPORATION

- ② Display Type : H→Character Type, G→Graphic Type, T→TAB Type
- ③ Display Font : Character 16 words, 02 Lines.
- ④ Model serials no.

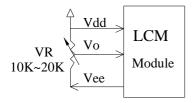
⑤ Backlight	$N \rightarrow Without backlight$	T→LED,	, White	$S \rightarrow LED$, High light White					
Type:	$B \rightarrow EL$, Blue green	A→LED	, Amber	L→LED, Full color					
	D→EL, Green	R→LED	, Red	J→DIP LED,Blue					
	$W \rightarrow EL$, White	O→LED	, Orange	$K \rightarrow DIP LED, White$					
	$M \rightarrow EL$, Yellow Green	G→LED	, Green	$E \rightarrow DIP LED$, Yellow Green					
	$F \rightarrow CCFL$, White	P→LED,	Blue	H→DIP LED,Amber					
	$Y \rightarrow LED$, Yellow Green	X→LED	, Dual color	$I \rightarrow DIP LED, Red$					
	$G \rightarrow LED$, Green	$C \rightarrow LED$, Full color						
◎ LCD Mode :	B→TN Positive, Gray		V→FSTN	Negative, Blue					
	N→TN Negative,		T→FSTN	Negative, Black					
	$L \rightarrow VA$ Negative		D→FSTN	Negative (Double film)					
	$H \rightarrow HTN$ Positive, Gray	У	F→FSTN	Positive					
	I→HTN Negative, Black	K	$K \rightarrow FSC$ Negative						
	U→HTN Negative, Blue	e	$S \rightarrow FSC$ Positive						
	M→STN Negative, Blue	e	E→ISTN	Negative, Black					
	$G \rightarrow STN$ Positive, Gray		C→CSTN	Negative, Black					
	Y→STN Positive, Yellow	w Green	A→ASTN	Negative, Black					
⑦ LCD Polarizer	$A \rightarrow Reflective, N.T, 6:00$)	H→Transfle	ctive, W.T,6:00					
Type/	$D \rightarrow Reflective, N.T, 12:0$	00	K→Transfle	ctive, W.T,12:00					
Temperature	$G \rightarrow Reflective, W. T, 6:0$	00	C→Transmi	ssive, N.T,6:00					
range/ View	J→Reflective, W. T, 12:0	00	F→Transmi	ssive, N.T,12:00					
direction	$B \rightarrow$ Transflective, N.T,6:	00	I→Transmis	sive, W. T, 6:00					
	$E \rightarrow$ Transflective, N.T.12	2:00	L→Transmi	ssive, W.T,12:00					
Special Code	JW:English and Japanese	e standard	font						
	V: Build in Negative Vol	tage							
	-								

2.Precautions in use of LCD Modules

- (1)Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3)Don't disassemble the LCM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6)Soldering: only to the I/O terminals.
- (7)Storage: please storage in anti-static electricity container and clean environment.
- (8) Winstar have the right to change the passive components, including R3,R6 & backlight adjust resistors. (Resistors, capacitors and other passive components will have different appearance and color caused by the different supplier.)
- (9)Winstar have the right to change the PCB Rev. (In order to satisfy the supplying stability, management optimization and the best product performance...etc, under the premise of not affecting the electrical characteristics and external dimensions, Winstar have the right to modify the version.)

3.General Specification

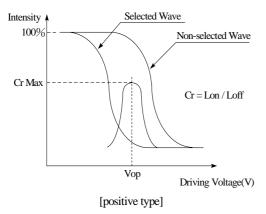
Item	Dimension	Unit
Number of Characters	16 characters x 2Lines	—
Module dimension	80.0 x 36.0 x 13.5 (MAX)	mm
View area	66.0 x 16.0	mm
Active area	56.20 x 11.5	mm
Dot size	0.55 x 0.65	mm
Dot pitch	0.60 x 0.70	mm
Character size	2.95 x 5.55	mm
Character pitch	3.55 x 5.95	mm
LCD type	VA Negative Transmissive (In LCD production, It will occur slightly color of can only guarantee the same color in the same ba	
Duty	1/16	
View direction	12 o'clock	
Backlight Type	LED, High light White	
IC	RW1063	

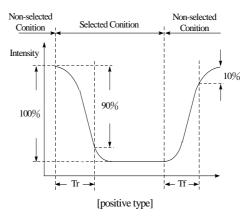

4.Absolute Maximum Ratings

Item	Item Symbol					
Operating Temperature	T _{OP}	-20	_	+70	°C	
Storage Temperature	T _{ST}	-30		+80	°C	
Input Voltage	V _{IN}	-0.3	_	V _{DD} +0.3	V	
Supply Voltage For Logic	V _{DD} -V _{SS}	-0.3		5.5	V	
Supply Voltage For LCD	V _{DD} -V ₀	V _{SS} -0.3		V _{SS} +7.0	V	

5.Electrical Characteristics

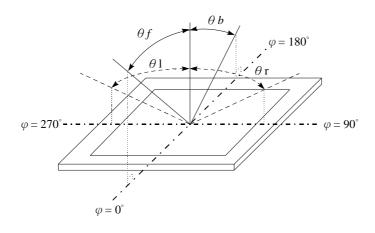
Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	V_{DD} - V_{SS}		4.5	5.0	5.5	V
Supply Voltage For LCD		Ta=-20°C		_	_	V
*Note	V_{DD} - V_0	Ta=25°C	6.2	6.5	6.8	V
		Ta=70°C				v
Input High Volt.	V _{IH}		2.5		V _{DD}	V
Input Low Volt.	V _{IL}		-0.3	_	0.6	V
Output High Volt.	V _{OH}	_	3.9			V
Output Low Volt.	V _{OL}				0.4	V
Supply Current	I _{DD}	V _{DD} =5.0V	_	2.0		mA


* Note: Please design the VOP adjustment circuit on customer's main board


6.Optical Characteristics

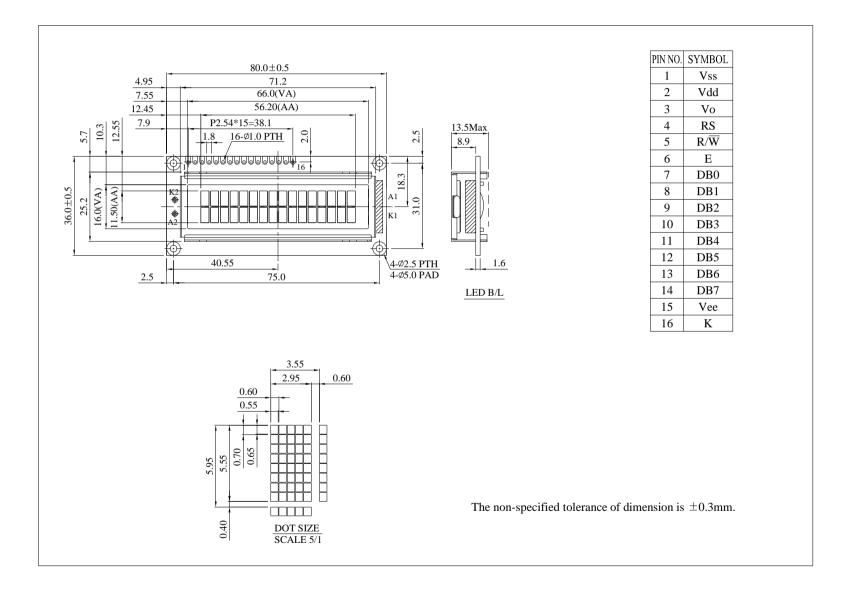
Item	Symbol	Condition	Min	Тур	Max	Unit
	θ	$CR \ge 10$	_	60		$\phi = 180^{\circ}$
View Angle	heta	$CR \ge 10$	_	25	_	$\phi = 0^{\circ}$
	θ	$CR \ge 10$		40		$\phi = 90^{\circ}$
	θ	$CR \ge 10$		40		$\phi = 270^{\circ}$
Contrast Ratio	CR	_	10			—
	T rise	_	_	300	350	ms
Response Time	T fall	—	_	300	350	ms

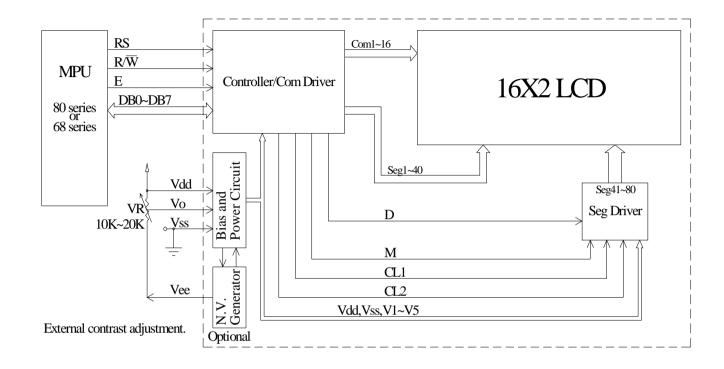
Definition of Operation Voltage (Vop)


Definition of Response Time (Tr, Tf)

Conditions :

Operating Voltage : Vop Frame Frequency : 64 HZ Viewing Angle(θ , φ): 0° , 0° Driving Waveform : 1/N duty , 1/a bias


Definition of viewing angle($CR \ge 2$)



7.Interface Pin Function

Pin No.	Symbol	Level	Description
1	V _{SS}	0V	Ground
2	V_{DD}	5.0V	Supply Voltage for logic
3	VO	(Variable)	Contrast Adjustment
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(MPU \rightarrow Module) L: Write(MPU \rightarrow Module)
6	Е	H,H→L	Chip enable signal
7	DB0	H/L	Data bus line
8	DB1	H/L	Data bus line
9	DB2	H/L	Data bus line
10	DB3	H/L	Data bus line
11	DB4	H/L	Data bus line
12	DB5	H/L	Data bus line
13	DB6	H/L	Data bus line
14	DB7	H/L	Data bus line
15	Vee	_	Negative Voltage Output
16	K	_	LED -

8.Contour Drawing & Block Diagram

Character located	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DDRAM address	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
DDRAM address	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

9.Character Generator ROM Pattern

Table.2

<u>b7∞4</u> b3∞0	0000	0001	0010	0011	0100	010 1	0110	0111	1000	1001	1010	1011	1100	110 1	1110	1111
0000	[00]			8												
0001	сс RAM [01]															
0010	сс кам [02]															
0011	сс кам [03]															
0100	СС RAM [04]															
0101	CG RAM [05]															
0110	CG RAM [06]															
0111	СС RAM [07]															
1000	С6 RAM [00]															
1001	сс кам [01]															
1010	CG RAM [02]															
1011	СС RAM [03]															
1100	сс кам [04]														**	
1101	сс кам [05]															
1110	сс кам [06]															
1111	СС RAM [07]															

10.Reliability

Content of Reliability Test (Wide temperature, -20°C~70°C)

	Environmental Test		
Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80°C 200hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C 200hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70°C 200hrs	
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 200hrs	1
High Temperature/ Humidity storage	The module should be allowed to stand at 60 °C,90%RH max For 96hrs under no-load condition excluding the polarizer, Then taking it out and drying it at normal temperature.	60°C ,90% RH 96hrs	1,2
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation $-20^{\circ}C$ $25^{\circ}C$ $70^{\circ}C$ 30min 5min 30min 1 cycle	-20°C/70°C 10 cycles	
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude : 1.5mm Vibration Frequency : 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	3
Static electricity test	Endurance test applying the electric stress to the terminal.	VS= 800 V,RS= 1.5 k Ω CS= 100 pF 1 time	

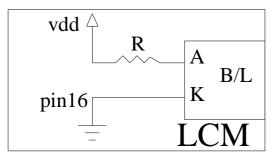
Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal

Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

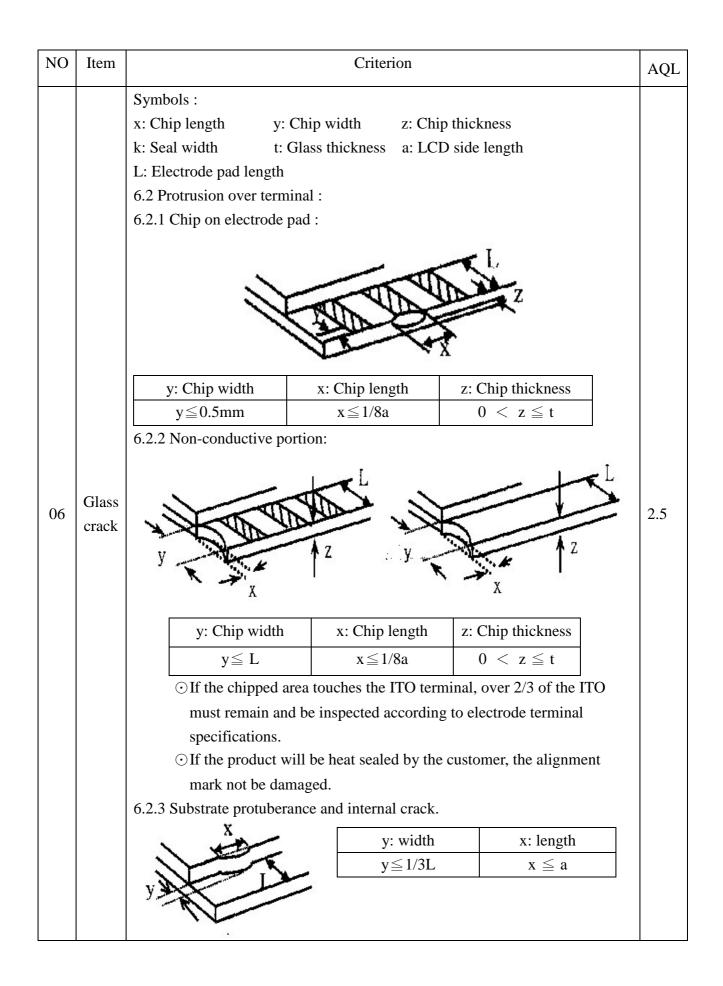
11.Backlight Information


Specification

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITION
Supply Current	ILED	48	60	72	mA	V=5.0V
Supply Voltage	V	4.9	5.0	5.1	V	-
Reverse Voltage	VR	_	_	5	V	-
Luminance (Without LCD)	IV	1440	1800	_	CD/M ²	ILED=60mA
LED Life Time (For Reference only)	_	_	50K	_	Hr.	ILED=60mA 25°C ,50-60%RH, (Note 1)
Color	White(high	n light)	1	1	1	

Note: The LED of B/L is drive by current only, drive voltage is for reference only. drive voltage can make driving current under safety area (current between minimum and maximum).

Note 1:50K hours is only an estimate for reference.


Drive from Vdd, Pin 16

12.Inspection specification

NO	Item			Criterion		AQL
01	Electrical Testing	 1.2 Missing cha 1.3 Display mal 1.4 No function 	racter , do function. or no disp sumption e ag angle de uct types.	t or icon. blay. exceeds product spe	ment contrast defect. ecifications.	0.65
02	Black or white spots on LCD (display only)	three white o	or black sp	-	nm, no more than or lines within 3mm	2.5
03	LCD black spots, white spots, contamination (non-display)	3.1 Round type $\Phi = (x + y)$ X M $3.2 \text{ Line type : } ($	/2 ↓ ▼Y	SIZE	Acceptable Q TY Accept no dense 2 1 0 Acceptable Q TY Accept no dense 2 As round type	2.5
04	Polarizer bubbles	If bubbles are vi judge using blac specifications, n to find, must che specify direction	ck spot not easy eck in	Size Φ $\Phi \leq 0.20$ $0.20 < \Phi \leq 0.50$ $0.50 < \Phi \leq 1.00$ $1.00 < \Phi$ Total Q TY	Acceptable Q TY Accept no dense 3 2 0 3 3	2.5

NO	Item		Criterion		AQL
05	Scratches	Follow NO.3 LCD blac	k spots, white spots, con	tamination	
		Symbols Define:x: Chip lengthy:k: Seal widtht: Electrode pad length6.1 General glass chip :	Chip width z: Chi Glass thickness a: LC	p thickness D side length	
		z: Chip thickness	y: Chip width	x: Chip length	
06	Chipped	$Z \leq 1/2t$	Not over viewing area	$x \leq 1/8a$	2.5
	glass	$1/2t < z \leq 2t$	Not exceed 1/3k	$x \leq 1/8a$	
		• If there are 2 or more 6.1.2 Corner crack:	chips, x is total length of	y	
		z: Chip thickness	y: Chip width	x: Chip length	
		Z≦1/2t	Not over viewing area	$x \leq 1/8a$	
		$1/2t < z \leq 2t$	Not exceed 1/3k	$x \leq 1/8a$	
		\odot If there are 2 or more	chips, x is the total leng	th of each chip.	

NO	Item	Criterion	AQL
07	Cracked glass	The LCD with extensive crack is not acceptable.	2.5
08	Backlight elements	 8.1 Illumination source flickers when lit. 8.2 Spots or scratched that appear when lit must be judged. Using LCD spot, lines and contamination standards. 8.3 Backlight doesn't light or color wrong. 	0.65 2.5 0.65
09	Bezel	9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination.9.2 Bezel must comply with job specifications.	2.5 0.65
10	PCB \ COB	 10.1 COB seal may not have pinholes larger than 0.2mm or contamination. 10.2 COB seal surface may not have pinholes through to the IC. 10.3 The height of the COB should not exceed the height indicated in the assembly diagram. 10.4 There may not be more than 2mm of sealant outside the seal area on the PCB. And there should be no more than three places. 10.5 No oxidation or contamination PCB terminals. 10.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts, missing parts or excess parts. 10.7 The jumper on the PCB should conform to the product characteristic chart. 10.8 If solder gets on bezel tab pads, LED pad, zebra pad or screw hold pad, make sure it is smoothed down. 10.9 The Scraping testing standard for Copper Coating of PCB 	 2.5 2.5 0.65 2.5 0.65 0.65 2.5 2.5 2.5 2.5 2.5
11	Soldering	 11.1 No un-melted solder paste may be present on the PCB. 11.2 No cold solder joints, missing solder connections, oxidation or icicle. 11.3 No residue or solder balls on PCB. 11.4 No short circuits in components on PCB. 	2.5 2.5 2.5 0.65

NO	Item	Criterion	AQL
NO 12	Item General appearance	 12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP. 12.2 No cracks on interface pin (OLB) of TCP. 12.3 No contamination, solder residue or solder balls on product. 12.4 The IC on the TCP may not be damaged, circuits. 12.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it cause the interface pin to sever. 12.6 The residual rosin or tin oil of soldering (component or chip component) is not burned into brown or black color. 12.7 Sealant on top of the ITO circuit has not hardened. 12.8 Pin type must match type in specification sheet. 12.9 LCD pin loose or missing pins. 	AQL 2.5 0.65 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.65 0.65 0.65
		 12.10 Product packaging must the same as specified on packaging specification sheet. 12.11 Product dimension and structure must conform to product specification sheet. 12.12 Visual defect outside of VA is not considered to be rejection. 	0.65

<u>13.Material List of Components for</u> <u>RoHs</u>

 WINSTAR Display Co., Ltd hereby declares that all of or part of products (with the mark "#"in code), including, but not limited to, the LCM, accessories or packages, manufactured and/or delivered to your company (including your subsidiaries and affiliated company) directly or indirectly by our company (including our subsidiaries or affiliated companies) do not intentionally contain any of the substances listed in all applicable EU directives and regulations, including the following substances.

Exhibit A: The Harmful Material List

Material	(Cd)	(Pb)	(Hg)	(Cr6+)	PBBs	PBDEs
Limited Value	100 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm
Above limit	ed value is s	et up accordi	ing to RoHS			

2.Process for RoHS requirement :

- (1) Use the Sn/Ag/Cu soldering surface ; the surface of Pb-free solder is rougher than we used before.
- (2) Heat-resistance temp. :

Reflow : 250° C, 30 seconds Max. ;

Connector soldering wave or hand soldering $: 320^{\circ}$ C, 10 seconds max.

(3) Temp. curve of reflow, max. Temp. : $235\pm5^{\circ}C$;

Recommended customer's soldering temp. of connector : 280°C, 3 seconds.

14.Recommendable Storage

- 1. Place the panel or module in the temperature $25^{\circ}C\pm 5^{\circ}C$ and the humidity below 65% RH
- 2. Do not place the module near organics solvents or corrosive gases.
- 3. Do not crush, shake, or jolt the module.

winstar <u>LCM Sampl</u> 10dule Number:		<u>Feedback Sheet</u> Page: 1
1 • Panel Specification :		
1. Panel Type :	Pass	□ NG ,
2. View Direction :	Pass	□ NG ,
3. Numbers of Dots :	Pass	□ NG ,
4. View Area :	Pass	□ NG ,
5. Active Area :	Pass	□ NG ,
6. Operating Temperature :	Pass	□ NG ,
7. Storage Temperature :	Pass	□ NG ,
8. Others :		
2 • Mechanical Specification :		
1. PCB Size :	Pass	□ NG ,
2. Frame Size :	Pass	□ NG ,
3. Materal of Frame :	Pass	□ NG ,
4. Connector Position :	Pass	□ NG ,
5. Fix Hole Position :	Pass	□ NG ,
6. Backlight Position :	Pass	□ NG ,
7. Thickness of PCB :	Pass	□ NG ,
8. Height of Frame to PCB :	Pass	□ NG ,
9. Height of Module :	Pass	□ NG ,
10. Others :	Pass	□ NG ,
3 <u> </u>		
1. Pitch of Connector :	Pass	□ NG ,
2. Hole size of Connector :	Pass	□ NG ,
3. Mounting Hole size :	Pass	□ NG ,
4. Mounting Hole Type :	Pass	□ NG ,
5. Others :	Pass	□ NG ,
4 <u>Backlight Specification</u> :		
1. B/L Type :	Pass	□ NG ,
2. B/L Color :	Pass	□ NG ,
3. B/L Driving Voltage (Refere	nce for LED T	
4. B/L Driving Current :	Pass	□ NG ,
5. Brightness of B/L :	Pass	□ NG ,
6. B/L Solder Method :	Pass	□ NG ,
7. Others :	Pass	□ NG ,

winstar

Module Number :

- 2. Supply Current :
- 3. Driving Voltage for LCD : Pass
- 4. Contrast for LCD : □ Pass
 5. B/L Driving Method : □ Pass
- 6. Negative Voltage Output : Pass
- 7. Interface Function :

Pass

Pass

- 9. ESD test :
- 10. Others :

6 • <u>Summary</u> :

Page: 2

□ NG ,
□ NG ,
\Box NG.

Sales signature : _____

Customer Signature :

Date: / /

15.Other (IC Information)

1.Function Description

SYSTEM INTERFACE (Parallel 8-bit bus and 4-bit bus)

This chip has all four kinds interface type with MPU: IIC, 4SPI, 4-bit bus and 8-bit bus. Serial and parallel buses (4-bit/8-bit) are selected by IF1 and IF0 input pins, and 4-bit bus and 8-bit bus is selected by DL bit in the instruction register.

During read or write operation, two 8-bit registers are used. One is data register (DR); the other is instruction register (IR). The data register (DR) is used as temporary data storage place for being written into or read from DDRAM/CGRAM, target RAM is selected by RAM address setting instruction. Each internal operation, reading from or writing into RAM, is done automatically.

So to speak, after MPU reads DR data, the data in the next DDRAM/CGRAM address is transferred into DR automatically. Also after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM automatically.

The Instruction register (IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data.

IR: Instruction Register.

DR: Data Register.

RS	R/W	Operation
0	0	Instruction write operation (MPU writes Instruction code into IR)
0	1	Read busy flag (DB7) and address counter (DB0 - DB6)
1	0	Data write operation (MPU writes data into DR
1	1	Data read operation (MPU reads data from DR)

BUSY FLAG (BF) (only support parallel 8-bit bus and 4-bit bus)

When BF = "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R / W = High (Read Instruction Operation); through DB7 before executing the next instruction, be sure that BF is not High.

DISPLAY DATA RAM (DDRAM)

DDRAM stores display data of maximum 80 x 8 bits (80 characters). DDRAM address is set in the address counter (AC) as a hexadecimal number. (Refer to Figure 1.)

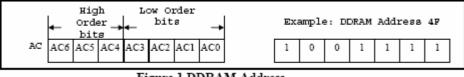


Figure 1 DDRAM Address

Since DDRAM has 8 bits data. It is possible to access 256 CGROM/CGRAM fonts.

1-line display (N = 0) (Figure 2)

WINSTAR

When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the Controller, 8 characters are displayed. See Figure 3.

When the display shift operation is performed, the DDRAM address shifts. See Figure 3.

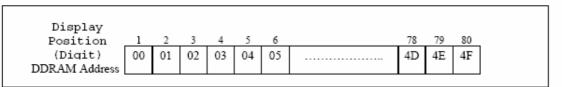


Figure 2 1-Line Display

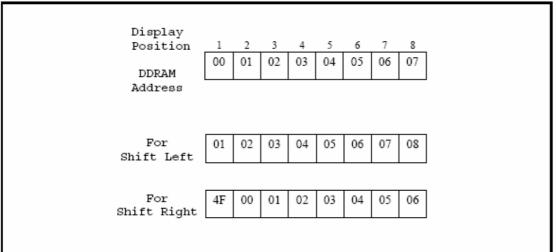


Figure 3 1-Line by 8-Character Display Example

2-line display (N = 1) (Figure 4)

Case 1: When the number of display characters is less than 40 x 2 lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not consecutive. For example, when just the Controller is used, 8 characters x 2 lines are displayed. See Figure 5. When display shift operation is performed, the DDRAM address shifts. See Figure 5.

Display Position	1	2	3	4	5	6	38	39	40
DDRAM	00	01	02	03	04	05	 25	26	27
Address (hexadecimal)	40	41	42	43	44	45	 65	66	67

Figure 4 2-Lines Display

Display Position	1	2	3	4	5	6	7	8	
DDRAM	00	01	02	03	04	05	06	07]
Address	40	41	42	43	44	45	46	47	
									1
For	01	02	03	04	05	06	07	08]
Shift Left	41	42	43	44	45	46	47	48	
For									
Shift Right	27	00	01	02	03	04	05	06]
	67	40	41	42	43	44	45	46	1
									1

Figure 5 2-Lines by 8-Character Display Example

Case 2: For a 16-character x 2-line display, the Controller can be extended using one 40-output extension driver. See Figure 6.

When display shift operation is performed, the DDRAM address shifts. See Figure 6.

Display	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Position DDRAM	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	
Address	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	
			I	I		I	I	1	L	I	1	I	I	I			
For Shift	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	
Left	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	
For Shift	27	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	
Right	67	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	

Figure 6 2-Lines by 16-Character Display Example

TIMING GENERATION CIRCUIT

Timing generation circuit generates clock signals for the internal operations.

ADDRESS COUNTER (AC)

Address Counter (AC) stores DDRAM/CGRAM address, transferred from IR.

After writing into (reading from) DDRAM/CGRAM/SEGRAM, AC is automatically increased (decreased) by 1.

When RS = "Low" and R/W = "High", AC can be read through DB0-DB6

CURSOR/BLINK CONTROL CIRCUIT

It controls cursor/blink ON/OFF and black/white inversion at cursor position.

LCD DRIVER CIRCUIT

LCD Driver circuit has 16 common and 40 segment signals for 2-line display (N=1) or 8 common and 40 segments for 1-line display (N=0) for LCD driving.

Data from CGRAM/CGROM is transferred to 40 bit segment latches serially, and then it is stored to 40 bit shift latch.

CGROM (CHARACTER GENERATOR ROM)

CGROM has 10,240 bits (256 characters x 5 x 8 dot)

CGRAM (CHARACTER GENERATOR RAM)

CGRAM has up to 5 _ 8 dots 8 characters. By writing font data to CGRAM, user defined character can be used (refer to Table 2).

5 x 8 dots Character Pattern

Table 2. Relationship between Character Code (DDRAM) and Character Pattern (CGRAM)

	Char	acter	Code	e (DD	RAN	I data)		CC	GRAN	í Add	lress				0	GRA	M D	ata			Pattern
D7	D6	D5	D4	D3	D2	D1	D0	A5	A4	A3	A2	Α1	A0	P7	P6	P5	P4	P3	P2	P1	PO	Number
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	0	1	1	1	0	Pattern 1
-	-	-	-	-	0	0	0	-	-	-	0	0	1	-	-	-	1	0	0	0	1	
-	-	-	-	-	0	0	0	-	-	-	0	1	0	-	-	-	1	0	- 0	0	1	
-	-	-	-	-	0	0	0	-	-	-	0	1	1	-	-	-	1	1	1	1	1	
-	-	-	-	-	0	0	0	-	-	-	-1	0	0	-	-	-	1	0	0	0	1	
-	-	-	-	-	0	0	0	-	-	-	-1	0	1	-	-	-	1	0	0	0	1	
-	-	-	-	-	0	0	0	-	-	-	-1	1	0	-	-	-	1	0	0	0	1	
-	-	-	-	-	0	0	0	-	-	-	-1	1	1	-	-	-	0	0	0	0	0	
				-					-			-						-				
				-					-			-						-				
0	0	0	0	0	1	1	1	1	1	1	0	0	0	Х	Х	Х	1	0	0	0	1	Pattern 8
-	-	-	-	-	1	1	1	-	-	-	0	0	1	-	-	-	1	0	0	0	1	
-	-	-	-	-	1	1	1	-	-	-	0	1	0	-	-	-	1	0	0	0	1	
-	-	-	-	-	1	1	1	-	-	-	0	1	1	-	-	-	1	1	1	1	1	
-	-	-	-	-	1	1	1	-	-	-	1	0	0	-	-	-	1	0	0	0	1	
-	-	-	-	-	1	1	1	-	-	-	1	0	1	-	-	-	1	0	0	0	1	
-	-	-	-	-	1	1	1	-	-	-	1	1	0	-	-	-	1	0	0	0	1	
-	-	-	-	-	1	1	1	-	-	-	1	1	1	-	-	-	0	0	0	0	0	

Notes:

1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).

2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1, 1 bit will light up the 8th line regardless of the cursor presence.

3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left).

4. As shown Table 2, CGRAM character patterns are selected when character code bits 4 to 7 are all 0 and MW=0. However, since character code bit 3 has no effect, the H display example above can be selected by either character code 00H or 08H.

5. 1 for CGRAM data corresponds to display selection and 0 to non-selection.

"-": Indicates no effect.

Instruction	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Description Time (540KHz)
Read display data	1	1				Read	l data			•	Read data into DDRAM/CGRAM/SEGRAM	18.5us
Write display data	1	0				Write	e data				Write data into DDRAM/CGRAM/SEGRAM	18.5us
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM, and set DDRAM address to "00H" from AC	0.76ms
Return Home	0	0	0	0	0	0	0	0	1	Х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	0.76ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Assign cursor moving direction and specify display shift. These operations are performed during data read and write. I/D="1": increment I/D="0": decrement	18.5us
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	Set Display /Cursor/Blink On/OFF D="1": display on D="0": display off C="1": cursor on C="0": cursor off B="1": blink on B="0": blink off	18.5us
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	Х	Ă	Cursor or display shift S/C="1": display shift S/C="0": cursor shift R/L="1": shift to right R/L="0": shift to left	18.5us
Function Set	0	0	0	0	1	DL	N	F	Х	Х	Set Interface Data Length DL= 8-bit interface/ 4-bit interface N = 2-line/1-line display F= 5x8 Font Size / 5x11Font Size	18.5us
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	18.5us
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	18.5us
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1		Can know internal operation is ready or not by reading BF. The contents of address counter can also be read. BF="1": busy state BF="0": ready state	Ous

Clear Display

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter). Return cursor to the original status; namely, bring the cursor to the left edge on first line of the display. Make entry mode increment (I/D = "1").

Return Home:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	Х

Return Home is cursor return home instruction. Set DDRAM address to "00H" into the address counter. Return cursor to its original site and return display to its original status, if shifted. A content of DDRAM does not change.

Entry Mode Set:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	I/D	S

Set the moving direction of cursor and display.

I/D: Increment/decrement of DDRAM address (cursor or blink)

I/D = 1: cursor/blink moves to right and DDRAM address is increased by 1.

I/D = 0: cursor/blink moves to left and DDRAM address is decreased by 1.

* CGRAM operates the same as DDRAM, when read/write from or to CGRAM

S: Shift of entire display

When DDRAM read (CGRAM read/write) operation or S = "Low", shift of entire display is not performed.

If S= "High" and DDRAM write operation, shift of entire display is performed according to I/D value (I/D = "1": shift left, I/D = "0": shift right).

s	I/D	Description
Н	Н	Shift the display to the left
Н	L	Shift the display to the right

Display ON/OFF

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	С	В

Control display/cursor/blink ON/OFF 1 bit register.

D: Display ON/OFF control bit.

D = 1: entire display is turned on.

D = 0: display is turned off, but display data is remained in DDRAM.

C: Cursor ON/OFF control bit.

C = 1: cursor is turned on.

C = 0: cursor is disappeared in current display, but I/D register remains its data.

B: Cursor Blink ON/OFF control bit.

B = 1: cursor blink is on, that performs alternate between all the high data and display character at the cursor position. If fosc has 540 kHz frequency, blinking has 185 ms interval.

B = 0: blink is off.

Cursor or Display Shift

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	-	-

Without writing or reading of display data, shift right/left cursor position or display. This instruction is used to correct or search display data (refer to Table 4). During 2-line mode display, cursor moves to the 2nd line after 40th digit of 1st line.

Note that display shift is performed simultaneously by the shift enable instruction. When displayed data is shifted repeatedly, all display lines shifted simultaneously. When display shift is performed, the contents of address counter are not changed.

Table 4. Shift Patterns According to S/C and R/L Bits

S/C	R/L	Operation
0	0	Shift cursor to the left, address counter is decreased by 1
0	1	Shift cursor to the right, address counter is increased by 1
1	0	Shift all the display to the left, cursor moves according to the display
1	1	Shift all the display to the right, cursor moves according to the display

Function Set

_	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	0	1	DL	Ν	F	Х	Х

DL: Interface data length control bit

When DL = "High", it means 8-bit bus mode with MPU.

When DL = "Low", it means 4-bit bus mode with MPU. So to speak, DL is a signal to select 8-bit or 4-bit bus mode.

When 4-bit bus mode, it needs to transfer 4-bit data by two times.

IF using IIC and 4-SPI interface > DL bit must be setting to "1"

N: Display line number control bit

When N = "Low", it means 1-line display mode.

When N = "High", 2-line display mode is set.

F: Display font type control bit

When F = "Low", it means 5 x 8 dots format display mode

When F = "High", 5 x11 dots format display mode.

Ν	F	No. of Display Lines	Character Font	Duty Factor
L	L	1	5x8	1/8
L	Н	1	5x11	1/11
Н	x	2	5x8	1/16

Set CGRAM Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Set CGRAM address to AC.

This instruction makes CGRAM data available from MPU.

Set DDRAM Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

Set DDRAM address to AC.

This instruction makes DDRAM data available from MPU.

When 1-line display mode (N=0), DDRAM address is from "00H" to "4FH"

In 2-line display mode (NW = 0), DDRAM address in the 1st line is from "00H" - "27H", and DDRAM address in the 2nd line is from "40H" - "67H".

Read Busy Flag and Address (only support parallel 8-bit bus and 4 bit bus)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

This instruction shows whether Controller is in internal operation or not. If the resultant BF is "high", it means the internal operation is in progress and you have to wait until BF to be Low, and then the next instruction can be performed. In this instruction you can read also the value of address counter.

Write Data to RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write binary 8-bit data to DDRAM/CGRAM/SEGRAM.

The selection of RAM from DDRAM, CGRAM, is set by the previous address set instruction:

DDRAM address set, CGRAM address set. RAM set instruction can also determine the AC direction to RAM.

After write operation, the address is automatically increased/decreased by 1, according to the entry mode.

Read Data from RAM (only support parallel 8-bit bus and 4 bit bus)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read binary 8-bit data from DDRAM/CGRAM.

The selection of RAM is set by the previous address set instruction. If address set instruction of RAM is not performed before this instruction, the data that read first is invalid, because the direction of AC is not determined.

If you read RAM data several times without RAM address set instruction before read operation, you can get correct RAM data from the second, but the first data would be incorrect, because there is no time margin to transfer RAM data.

In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set instruction: it also transfer RAM data to output data register. After read operation address counter is automatically increased/decreased by 1 according to the entry mode.

After CGRAM read operation, display shift may not be executed correctly.

* In case of RAM write operation, after this AC is increased/decreased by 1 like read operation. In this time, AC indicates the next address position, but you can read only the previous data by read instruction.

OUTLINE

To overcome the speed difference between internal clock of Controller and MPU clock, Controller performs internal operation by storing control information to IR (Instruction Register) or DR (data Register).

The internal operation is determined according to the signal from MPU, composed of read/write and data bus.

I Nstruction can be divided largely four kinds;

*Controller function set instructions (set display methods, set data length, etc.)

*Address set instructions to internal RAM

*Data transfer instructions with internal RAM

*Others

The address of internal RAM is automatically increased or decreased by 1.

NOTE: During internal operation, Busy Flag (DB7) is read high. Busy Flag check must be preceded the next instruction.

Busy flag check must be proceeded the next instruction.

When an MPU program with Busy Flag (DB7) checking is made, 1/2 Fosc (is necessary) for executing the next instruction by the falling edge of the "E" signal after the Busy Flag (DB7) goes to "Low".

INTERFACE WITH MPU

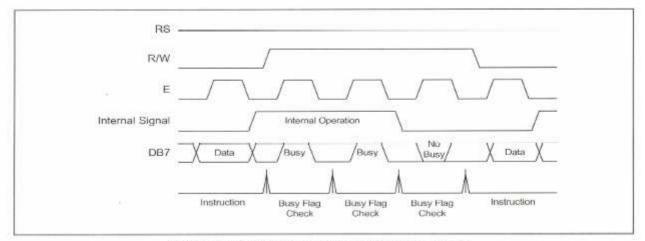
Controller can transfer data in bus mode (4-bit or 8-bit) or serial mode with MPU.

In case of 4-bit bus mode, data transfer is performed by two times to transfer 1 byte data.

When interfacing data lengths are 4-bit, only 4 ports, from DB4 - DB7, are used as data bus. At first higher 4-bit (in case of 8-bit bus mode, the contents of DB4 - DB7) are transferred, and then lower 4- bit (in case of 8-bit bus mode, the contents of DB0 - DB3) are transferred. So transfer is performed by two times.

Busy Flag outputs "High" after the second transfer are ended.

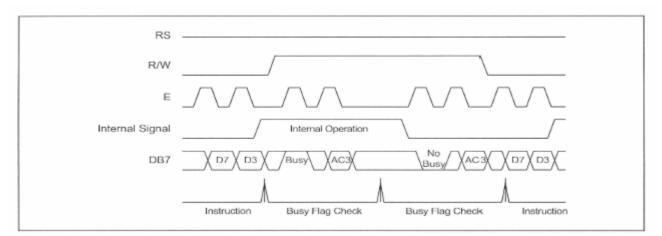
. When interfacing data length are 8-bit, transfer is performed at a time through 8 ports, from DB0 - DB7.


Interface is selected by IF1, IF0 pins (refer to **Bonding Note for IF1, IF0** on Page 10)

IF1	IF0	Interface select
open	open	6800 8/4 bit
open	Bonding to VDD	IIC
Bonding to VDD	open	4-line SPI

INTERFACE WITH MPU IN BUS MODE

Interface with 8-bit MPU


If 8-bits MPU is used, Controller can connect directly with that. In this case, port E, RS, R/W and DB0 to DB7 need to interface each other. Example of timing sequence is shown below.

Example of 8-bit Bus Mode Timing Sequence

Interface with 4-bit MPU

If 4-bit MPU is used, Controller can connect directly with this. In this case, port E, RS, R/W and DB4 - DB7 need to interface each other. The transfer is performed by two times. Example of timing sequence is shown below.

Example of 4-bit Bus Mode Timing Sequence

INITIALIZING

INITIALIZING BY INTERNAL RESET CIRCUIT

When the power is turned on, Controller is initialized automatically by power on reset circuit. During the initialization, the following instructions are executed, and BF (Busy Flag) is kept "High" (busy state) to the end of initialization.

Clear Display Instruction

Write "20H" to all DDRAM

Set Functions Instruction

DL = 1: 8-bit bus mode

N = 0: 1-line display

 $F = 0: 5 \times 8$ dot character font

Display ON/OFF Instruction

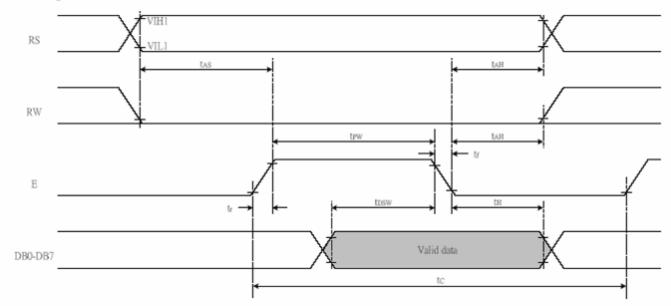
- D = 0: Display OFF
- C = 0: Cursor OFF

B = 0: Blink OFF

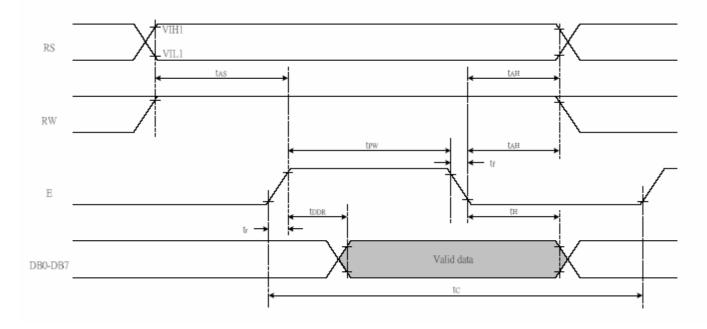
Set Entry Mode Instruction

I/D = 1: Increment by 1

S = 0: No entire display shift


Note:

If the electrical characteristics conditions listed under the table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the Controller. For such a case, initialization must be performed by the MPU as explain by the following figure.

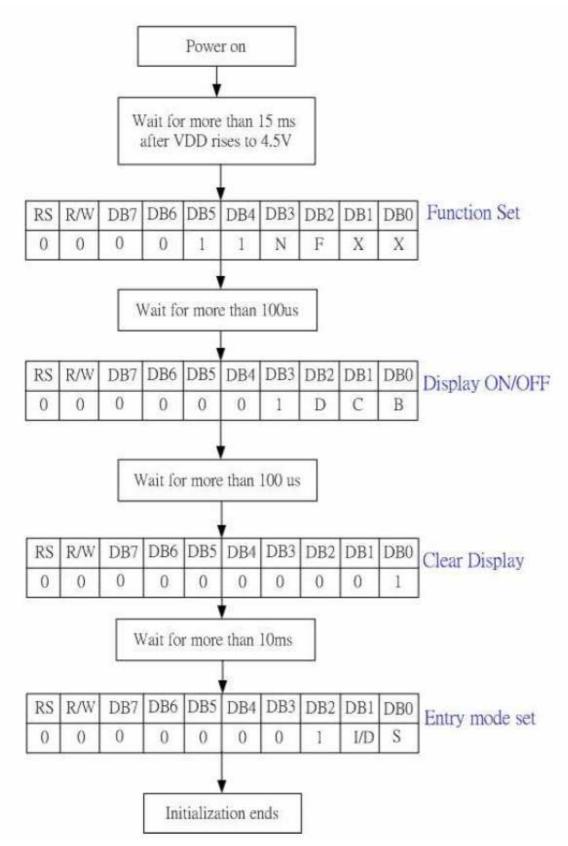

3. Timing Characteristics

Timing Characteristics

Writing data from MPU to IC (Parallel 8-bit bus and 4-bit bus)

Reading data from IC to MPU(Parallel 8-bit bus and 4-bit bus)

In 6800 interface (TA = 25° C, VDD = 2.7V)


	Write Mo	de (Writing data from MPU t	o IC)			
Tc	Enable Cycle Time	Pin E (except clear display)	1000	-	-	ns
T_{PW}	Enable Pulse Width	Pin E	450	-	-	ns
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	60	-	-	ns
T _{AH}	Address Hold Time	Pins: RS,RW,E	20	-	-	ns
$\mathrm{T}_{\mathrm{DSW}}$	Data Setup Time	Pins: DB0 - DB7	195	-	-	ns
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns
	Read Mod	ie (Reading Data from IC - to	o MPU)			
Tc	Enable Cycle Time	Pin E	1000	-	-	ns
$T_{\rm PW}$	Enable Pulse Width	Pin E	450	-	-	ns
T_R, T_F	Enable Rise/Fall Time	Pin E	-		25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	60	-	-	ns
T _{AH}	Address Hold Time	Pins: RS,RW,E	20	-	-	ns
T _{DDR}	Data Setup Time	Pins: DB0 - DB7	-	-	360	ns
$T_{\rm H}$	Data Hold Time	Pins: DB0 - DB7	5	-	-	ns

In 6800 interface (TA = 25° C, VDD = 5V)

	Write Mo	de (Writing data from MPU t	o IC	9		
T _C	Enable Cycle Time	Pin E (except clear display)	500	-	-	ns
T_{PW}	Enable Pulse Width	Pin E	230	-	-	ns
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	20	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	40	-		ns
T_{AH}	Address Hold Time	Pins: RS,RW,E	10	-		ns
$\mathrm{T}_{\mathrm{DSW}}$	Data Setup Time	Pins: DB0 - DB7	80	-	-	ns
T_{H}	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns
	Read Mod	le (Reading Data from ${ m IC}$ to	MPU)			
$T_{\rm C}$	Enable Cycle Time	Pin E	500	-	-	ns
T_{PW}	Enable Pulse Width	Pin E	230	-		ns
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	20	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	40	-	-	ns
T_{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns
T _{DDR}	Data Setup Time	Pins: DB0 - DB7	-	-	120	ns
T_{H}	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns

4.Initializing of LCM

Serial Interface Mode(Fosc=540KHz)

TEXIM EUROPE

Partner in Electronic Components & Supply Chain Solutions

The Netherlands

Elektrostraat 17 NL-7483 PG Haaksbergen Tel: +31 (0)53 573 33 33 Fax: +31 (0)53 573 33 30 nl@texim-europe.com

Belgium

Gentsesteenweg 1154-C22 Chaussée de Gand 1154-C22 B-1082 Brussel / Bruxelles Tel: +32 (0)2 462 01 00 Fax: +32 (0)2 462 01 25 belgium@texim-europe.com

Germany

Justus-von-Liebig-Ring 7-9 D-25451 Quickborn Tel: +49 (0)4106 627 07-0 Fax: +49 (0)4106 627 07-20 germany@texim-europe.com

Austria

Warwitzstrasse 9 A-5020 Salzburg Tel: +43 (0)662 216026 Fax: +43 (0)662 216026-66

austria@texim-europe.com

Texim Europe B.V. Elektrostraat 17 NL-7483 PG Haaksbergen Tel: +31 (0)53 573 33 33 info@texim-europe.com www.texim-europe.com

Denmark

Nørregade 15 DK-9240 Nibe Tel: +45 88 20 26 30 Fax: +45 88 20 26 39 nordic@texim-europe.com

United Kingdom

St. Mary's House, Church Lane Carlton Le Moorland Lincoln LN5 9HS Tel: +44 (0)1522 789 555 Fax: +44 (0)845 299 22 26 uk@texim-europe.com

Germany

Martin-Kollar-Strasse 9 D-81829 München Tel: +49 (0)89 436 086-0 Fax: +49 (0)89 436 086-19 germany@texim-europe.com

