

Chefree Technology Inc.

10.4" XGA, MVA

High brightness color TFT-LCD module

Model: CH104CLGL-001

Date: Aug. 24th, 2012

Note: This specification is subject to change without notice

Customer :			
		Date :	

Approved	Prepared
Date:	Date:

M O D E L : C H 1 0 4 C L G L - 0 0 1 Page: 1 /24 Doc. No:

Contents

- 1. General Specifications.
- 2. Absolute maximum ratings.
 - 2.1 Absolute ratings of environment
 - 2.2 TFT LCD module Electrical absolute ratings
- Electrical Specification
 3.1 TFTLCD module
 - 3.2 Backlight Unit
- 4. Block Diagram
- 5. Interface Pin Assignment
 - 5.1 TFTLCD module
 - 5.2 Backlight Unit
 - 5.3 Color Data Input Assignment
- 6. Interface Timing
 6.1 Input Signal Timing Specification
 6.2 Power ON/OFF Sequence
 6.3 The Input Data Format
- 7. Optical Characteristics
- 8. Reliability Test
- 9. Shipping Level & Package
- 10. Mechanical Characteristics

MODEL: CH104CLGL-001 Page: 2 / 23 Doc. No:

RECORD OF REVISION

Version and Date Page		Old description	New description	Remark				
0.1 2012/08/24	All	First Edition for customer						

MODEL: CH104CLGL-001

Page: 3 / 23 Doc. No:

0. HANDLING PRECAUTIONS

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of TFT LCD panel.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.

MODEL: CH104CLGL-001 Page: 4 / 23 Doc. No:

1.General Specifications

No.	ltem	Specification	Remark
1	LCD size	10.4 inch	
2	Driver element	a-Si TFT active matrix	
3	Resolution	1024 × 3(RGB) × 768	
4	Display mode	Normally black, Super MVA	
5	Pixel pitch	0.0685 × 0.2055(H) mm	
6	Active area	210.4(W) × 157.8(H) mm	
7	Module size	238.6(W) × 175.8(H) × 7.5(D) mm	Note 1
8	Surface treatment	Anti-Glare	
9	Color arrangement	RGB-vertical stripe	
10	Display colors	16.2 M (RGB 8-bit)	
11	Brightness	800 nits	Note 2,3
12	Interface	1 ch LVDS	
13	Backlight power consumption	7.1 W (TBD)	
14	Panel power consumption	1.9 W	
15	Weight	280 g (Typ.)	

Note 1: Refer to Mechanical Drawing.

Note 2: Refer to sec.4 Optical Specifications.

Note 3: By thermal conduction to chassis, this panel can be operated at 1000 nits brightness

MODEL: CH104CLGL-001 Page: 5 / 23 Doc. No:

2. Absolute maximum ratings.

2.1. Absolute ratings of environment

Item	Symbol	Va	alue	Unit	Note
		Max.	Min.		
Storage Temperature	TST	-20	70	0 ⁰	(1)
Operating Ambient Temperature	TOP	-20	70	0 O	(1), (2)

Note (1) (a) 90 %RH Max. (Ta <= 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

(c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 70 °C max.

Note (3) Please be sure the conductive thermal management at top edge of panel.

2.2. Electrical absolute ratings

TFT LCD module

Item	Symbol	Va	alue	Unit	Note
		Max.	Min.		
Power Supply Voltage	VCC	-0.3	7.0	V	(1)
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)

Backlight Unit

Item	Symbol	Value			Value			Unit	Note
		Min	Тур	Max.					
LED Forward Current	IF	0		480	mA	(1), (2) Duty=100%			

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for input pin of LED light bar at Ta=25 \pm 2 °C (Refer to 4.3.3 and 4.3.4 for further information).

MODEL: CH104CLGL-001 Page: 6 / 23 Doc. No:

3. Electrical Specification

3.1 TFTLCD Module

Baramete	or	Symbol		Value		Linit	Note	
Falamete	51	Symbol	Min.	Тур.	Max.	Unit	Note	
Power Supply Voltage		V _{cc}	3.0	3.3	3.6	V	(1)	
Rush Current		I _{RUSH}	-	-	4.0	Α	(2)	
Dower Supply Current	White		530	570	620	mA	(3)	
Fower Supply Current	Black		380	420	460	mA		
Power Consumption		PL		1.9		W		
LVDS differential input vo	VID	100	-	600	mV	-		
LVDS common input volt	age	VICM	0.7	-	1.6	V	-	

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) Measurement Conditions:

Vcc rising time is 470 μ s

MODEL: CH104CLGL-001

Page: 7 / 23 Doc. No:

Vcc Power Dip Condition

3.2 BACKLIGHT UNIT

Item	Symbol	,	Value	-	Unit	Note
		Min	Тур	Max		
LED Light Bar Input	VPIN		19.8	21		(1), Duty=100%
LED Light Bar Current	IPIN	0	360		mA	(1), (2)
						Duty=100%
LED Life Time	LLED	30000			Hrs	(3)
Power Consumption	PBL		7.1		W	(1), Duty=100%

Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:

Note (2) PBL = IPIN × VPIN , LED light bar circuit is (6)Series, (8)Parallel.

Note (3) The lifetime of LED is defined as the time when LED packages continue to operate under the conditions at Ta = 25 ± 2 °C and I= (60)mA (per chip) until the brightness becomes $\leq 50\%$ of its original value.

MODEL:CH104CLGL-001 Page: 8 / 23 Doc. No:

4. BLOCK DIAGRAM

LED light bar connector JST BHSR-02VS-1 Or compatible

MODEL: CH104CLGL-001 Page: 9/23 Doc. No:

5. INTERFACE PIN ASIGNMENT

5.1 TFTLCD Module

CN1 Connector Pin Assignment

Pin	Name	Description
1	VCC	Power supply: +3.3V
2	VCC	Power supply: +3.3V
3	VCC	Power supply: +3.3V
4	GND	Ground
5	GND	Ground
6	GND	Ground
7	RPFI	Reverse Panel Function (Display Rotation) (Note: 2)
8	NC	No Connection
9	NC	No Connection
10	NC	No Connection
11	SEL6/8	LVDS 6/8 bit select function control, (Note: 2)
		Low or NC \rightarrow 8 bit Input Mode
		High \rightarrow 6 bit Input Mode
12	GND	Ground
13	NC	No Connection
14	GND	Ground
15	RX0-	Negative LVDS differential data input. Channel 0
16	RX0+	Positive LVDS differential data input. Channel 0
17	GND	Ground
18	RX1-	Negative LVDS differential data input. Channel 1
19	RX1+	Positive LVDS differential data input. Channel 1
20	GND	Ground
21	RX2-	Negative LVDS differential data input. Channel 2
22	RX2+	Positive LVDS differential data input. Channel 2
23	GND	Ground
24	RXCLK-	Negative LVDS differential clock input.
25	RXCLK+	Positive LVDS differential clock input.
26	GND	Ground
27	RX3-	Negative LVDS differential data input. Channel 3
28	RX3+	Positive LVDS differential data input. Channel 3
29	GND	Ground

MODEL: CH104CLGL-001 Page: 10 / 23 Doc. No:

	30	NC	Not connection
N	ote (1) (Connector Part N	o.: JAE, FI-XB30SRL-HF11 or compatible connector

Note (2) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected"

5.2 BACKLIGHT UNIT (Under Constructing) (Converter connector pin)

MODEL: CH104CLGL-001 Page: 11 / 23 Doc. No:

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

		Data Signal																							
	Color				Re	ed							G	reer	ר				Blue						
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grav	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Ocale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Grav	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Ocale	:	:	:	1	:	:	:	1	:	:	:	1	:	:	:	1	1	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
orcon	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Grav	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1	1	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	1	:	:	:	1	:	:	:	1	1	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Blue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

MODEL: CH104CLGL-001 Page: 12 / 23 Doc. No:

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal Max. Item Symbol Min. Тур. Unit Note DCLK 75 Frequency Fc 55 65 MHz Total Τv 806 950 Th Tv=Tvd+Tvb 770 Display Tvd 768 768 Th Vertical Active Display Term 768 -Blank Tvb 2 38 182 Th 1344 1800 Total Th 1104 Тс Th=Thd+Thb 1024 1024 Horizontal Active Display Term Display Thd 1024 Тс -Blank Thb 320 776 Тс 76 -

Note (1) Since this assembly is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this assembly would operate abnormally.

(2) Frame rate is 60Hz

INPUT SIGNAL TIMING DIAGRAM

Page: 13 / 23 Doc. No:

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

Note (1) Please avoid floating state of interface signal at invalid period.

- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Parameter		Linita		
	Min	Тур	Max	Umts
T1	0.5	-	10	ms
Τ2	0	-	50	ms
Т3	0	-	50	ms
T4	500	-	-	ms
Т5	200	-	-	ms
T6	20	-	-	ms
Τ7	5	-	300	ms
T8	10	-	-	ms
Т9	10	-	-	ms

MODEL: CH104CLGL-001

Page: 14 / 23 Doc. No:

Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB

Note (2) Please follow PSWG

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data.
G4	GreenData 4	
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RXCLKIN+	LVDS Clock Input	
RXCLKIN-		
DE	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	

Note (3) Output signals from any system shall be low or Hi-Z state when VCC is offMODEL: CH104CLGL-001Page: 15 / 23Doc. No:

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit	
Ambient Temperature	Та	25±2	O ⁰	
Ambient Humidity	На	50±10	% RH	
Supply Voltage	Vcc	5	V	
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"			
Converter Current	ΙL	TBD	mA	

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Values			Llnit	Note	
				Min.	Тур.	Max.	Unit	NOLE	
Color Chromaticity (CIE 1931)		Red	Rx		Тур- 0.03	0.60	Ty+ 0.03		(5)
			Ry			0.37			
		Green	Gx			0.37			
	city		Gy			0.56			
	1)	Blue	Bx			0.15			
		Ву	$\theta_X = 0^0$, $\theta_Y = 0^0$		0.09	-			
	White	Wx			0.31				
			Wy			0.33			
Center Luminance of White (Center of Screen)		L _C		700	800		Cd/m ²	(4)	
Contrast Ratio		CR		700	1000			(2)	
Response Time		TR	$\theta_X = 0^0$, $\theta_Y = 0^0$		14	19	ms	(3)	
		TF			11	16			
View angle	Hor	izontal	θ_{X-} - θ_{X+}		160	176		Deg	(1)
	Vert	lical	$\theta_{Y-} - \theta_{Y+}$	UK <u>≤</u> 10	160	176		Dey.	(1)

MODEL: CH104CLGL-001

Page: 16 / 23 Doc. No:

Note (1) Definition of Viewing Angle (θ_X , θ_Y)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F) :

Note (4) Definition of Luminance of White (LC):

Measure the luminance of gray level 255 at center point

LC = L(5)

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

MODEL: CH104CLGL-001 Page: 17 / 23 Doc. No:

Note (5): Measurement method

The LCD module should be stabilized at given temperature for 0.5 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

MODEL: CH104CLGL-001

Page: 18 / 23 Doc. No:

8. Reliability Test

Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50° C, 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 70° C, 50%RH, 240hours	
Low Temperature Operation (LTO)	Ta= -20℃, 240hours	
High Temperature Storage (HTS)	Ta= 70° C, 240hours	
Low Temperature Storage (LTS)	Ta= -20℃, 240hours	
Drop Test	Height: 60 cm, package test	
Thermal Shock Test (TST)	-20°C/30min, 70°C/30min, 100 cycles	1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (ElectroStatic Discharge)	Contact Discharge: ± 8KV,	2
	150pF(330 Ω) 1sec, 9 points, 25	
	times/ point.	
	Air Discharge: ± 15KV, 150pF(330 Ω)	2
	1sec 9 points, 25 times/ point.	

Note 1: The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

- Note 2: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures.
- Note 3: The test items are tested by open frame type chassis.

MODEL: CH104CLGL-001 Page: 19/23 Doc. No:

9. Shipping Label & Package

- (1) 18pcs LCD modules / 1 Box
- (2) Box dimensions: 465 (L) X 362 (W) X 314 (H) mm

(3) Weight: approximately 8.3Kg (18 modules per box

MODEL:CH104CLGL-001

Page: 20 / 23 Doc. No:

10. Mechanical Characteristic

MODEL: CH104CLGL-001 Page: 21 / 23 Doc. No:

.

MODEL: CH104CLGL-001 Page: 22 / 23 Doc. No:

MODEL: CH104CLGL-001 Page: 23 / 23 Doc. No: