

Product Specification

Chefree Technology Corp.

CUSTOMER' S APPROVAL SPECIFICATIONS

MODEL: CH101ILFL-CT6

(Complied with RoHS)

ISSUE:JUL.30.2014

Spec Condition: preliminary No. ITEM PAGE COVER 1 __ 0-1 2 RECORD OF REVISION 3 MECHANICAL SPECIFICATIONS 1 2 4 OUTLINE DIMENSIONS 3 5 INTERFACE PIN CONNECTION 4 6 BLOCK DIAGRAM 4 7 ABSOLUTE MAXIMUM RATINGS 5 8 ELECTRICAL CHARACTERISTICS 9 OPTICAL CHARACTERISTICS 6~8 **10 TIMING SPECIFICATIONS** 9~10 11 RELIABILITY TEST 11 12 PRECAUTIONS FOR USE 12~13

CUSTOMER	CHEFREE						
APPROVAL	APPROVAL	CHECKER	PREPARE				
	ch lee	kevin	kevin				

2.RECORD OF REVISION

Rev	DATE	PAGE	SUMMARY
0.1	2014.02.25	ALL	Preliminary specification was first issued.
0.2	2014.07.30	1&2	Modify Thickness from 7.59mm to 8.29mm.

3.MECHANICAL SPECIFICATIONS

(1)	Number Of Dots (Dots)	1024(R.G.B) X 600
(2)	Module Size(mm)	256.0(W) X 166.0(H) X 8.29(D)*
(3)	Active Area(mm)	222.72(H) X 125.28(V)
(4)	Pixel Pitch(mm)	0.2175 (H) X 0.2088(V)
(5)	LCD Model	TFT, Transmissive, Normally/White
(6)	Polarizer Model	3H Anti-glare (PCAP is 7H anti-reflection glass)
(7)	LED Backlight Color	White
(8)	Viewing Direction	Wide Viewing Angle
(9)	Grav Scale Inversion Direction	6 O'CLOCK
(10)	Color Configuration	R.G.B Stripe
(12)	Integration of LCM and Touch	Air gap tapes
(13)	PCAP Touch Function	4 fingers multi-touch
(14)	Module Weight(g)	TBD

(*)Module do not include bottom frame bezel.

 \mathbf{N}

OUTLINE DIMENSIONS

5. INTERFACE PIN CONNECTION

5.1 LCM PANEL DRIVING SECTION

CN1:STM MSAK24025P40D or equivalent

Pin #	Signal Name	Description	Remarks
1	BIST	BIST MODE SELECT(High Enable)	FOR INTERNAL TEST
2	VDD	LCD power supply (Typ. +3.3V)	
3	VDD	LCD power supply (Typ. +3.3V)	
4	V_EDID	EDID power supply	
5	NC	No connection	
6	CLK_EDID	EDID CLK signal	
7	Data_EDID	EDID Data signal	
8	LVDS input 0-	LVDS CH0 data signal(-) \cdot R0 \sim R5 \cdot G0	
9	LVDS input 0+	LVDS CH0 data signal(+) $\$ R0 \sim R5 $\$ G0	
10	GND	GND	
11	LVDS input 1-	LVDS CH1 data signal(-) \cdot G1 \sim G5 \cdot B0 \cdot B1	
12	LVDS input 1+	LVDS CH1 data signal(+) $\$ G1 \sim G5 $\$ B0 $\$ B1	
13	GND	GND	
14	LVDS input 2-	LVDS CH2 data signal(-) $\$ B2 \sim B5 $\$ DE	
15	LVDS input 2+	LVDS CH0 data signal(+) $\$ B2 \sim B5 $\$ DE	
16	GND	GND	
17	LVDS CLK -	LVDS CLK data signal(-)	
18	LVDS CLK +	LVDS CLK data signal(+)	
19	GND	GND	
20	LVDS input 3	LVDS CH3 data signal(-)、R6~R7、G6~G7、	
20	EVDS input 5-	B6~B7	
21	LVDS input 2+	LVDS CH3 data signal(-) \ R6~R7 \ G6~G7 \	
21	EVDS input 5+	B6~B7	
22	GND	GND	
23	NC	No connection	
24	NC	No connection	
25	GND	GND	
26	NC	No connection	
27	NC	No connection	
28	GND	GND	
29	NC	No connection	
30	NC	No connection	
31	GND	GND	
32	GND	GND	

33	GND	GND
34	NC	No connection
35	PWM	LED dimming signal
36	LED_EN	LED Enable signal
37	NC	No connection
38	VLED	LED power supply (Typ. 5V)
39	VLED	LED power supply (Typ. 5V)
40	VLED	LED power supply (Typ. 5V)

CTP Electrical Characteristic

Symbol Descri	ption	Min	Тур	Max	Unit	Notes
VCC	Supply voltage	3.3	5.0	5.5	V	

6. BLOCK DIAGRAM

7. ABSOLUTE MAXIMUM RATINGS

7.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	MIN.	MAX.	UNIT	REMARK
Logic Power Supply Voltage	VDD	3.0	3.6	V	
LED Backlight Drive Voltage	VLED	-0.3	12	V	
LVDS Input Signal	Vs	-0.3	3.6	V	
PWM Dimming Voltage	V _{PWM}	-0.3	12	V	

7.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

ITEM	OPERATING		STO	RAGE		
	MIN	MAX	MIN	MAX	REMARK	
Ambient Temperature(°C)	-20	70	-30	80	Note 1,2	

Note 1 : The response time will become lower when operated at low temperature.

Note 2 : Background color changes slightly depending on ambient temperature.

8. ELECTRICAL CHARACTERISTICS 8.1 ELECTRICAL CHARACTERISTICS OF LCD

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
System Power Supply	·					
Input Power Supply Voltage	V _{IN}	3.0	3.3	3.6	V	
Input Power Supply Current	I _{VIN}	-	-	217	mA	Black pattern [,] 60Hz
Input Inrush Current	I _{RUSH}	-	-	1.5	A	0.5ms rise time (10%~90%)
Input Power Voltage Ripple	V_{RPL}	-	-	200	mV	Vр-р
LED Power Supply	·					
Input Power Supply Voltage	V _{LED-IN}	4.5	5	5.5	V	
Input Power Supply Current	I _{IN}	-	-	586	mA	V_LED=4.5V,η=85%
	VH	2.0	-	5.0	V	
	VL	0	-	0.5	V	
LVDS Signals			L	L	L	
Differential Input High Threshold	V _{th}	-	-	+100	mV	V _{cm} =+1.2V
Differential Input Low Threshold	V _{tl}	-100	-	-	mV	V _{cm} =+1.2V
Magnitude Differential Input Voltage	V _{id}	200	-	600	mV	
Common Mode Voltage	V _{cm}	1.0	1.2	1.4	V	V_{th} - V_{tl} = 200mV
Common Mode Voltage Offset	ΔV_{cm}	-50	-	+50	mV	$V_{th} - V_{tl} = 200 mV$
EDID Power Supply						
Input Power Supply Voltage	V_EDID	3.0		3.6	V	

Note: A. Input signals shall be low or Hi-Z state when VIN is off.

- B. All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.
- C. White Pattern at 3.3V driving voltage.

8.2 BACKLIGHT UNITS

.

						14 20 0
ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	REMARK
LED Driving Voltage	VLED	4.5	5	5.5	V	
LED Driving Current	ILED	-	-	585	mA	
	VIH	2	3.3	5	V	
Brightness Control	VIL	0	-	0.8	V	
PWM Frequency	F _{PWM}	200		1K	Hz	
LED Life Time	-	30000	-	-	Hr	Note1

 $Ta=25^{\circ}C$

Note1 : The LED life time define as the estimated time to 50% degradation of the initial value.

9. OPTICAL CHARACTERISTICS

Ta=25°C

								•
ITEM	ITEM SYM		CONDITIONS	MIN.	TYP.	MAX.	UNIT	REMARK
Contrast Ratio	0	CR	Viewing	(400)	(500)	-	-	Note (1)
Response Time		T _{R+} T _F	Normal Angle $\Theta x = \Theta_y$ =0°	-	16	20	ms	Note (2)
Characticity	White	х	0	(0.255)	(0.305)	(0.355)	_	Note (A)
Cinomatienty	w mic	у		(0.275)	(0.325)	(0.375)	-	Noic (4)
		Θx+	Viewing	(70)	(80)	-		
Viewing	Hor.	Θx-	Angle	(70)	(80)	-		
Angle	X 7	$\Theta_{ m Y}+$	$\Theta x = \Theta_y$ =0°	(70)	(80)	_	Deg.	Note (3)
	ver.	Θγ-	$CR \ge 10$	(50)	(60)	-		
Luminance		L	Center	(240)	(300)	-	cd/m2	Note (4)
Luminance uniformity		YU	PWM=100%	70	80	-	%	Note (5)

*Note (1) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).

*Note (2) Definition of Response Time (T_R, T_F):

*Note (4) Measurement Set-Up:

The LCD module should be stabilized at a given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

*Note (5)

3.0 Pixel Format Image

Figure 2 shows the relationship of the input signals and LCD pixel format image.

Figure 2 Pixel Format

R+G+B dots =1 Pixel

10. TIMING SPECIFICATIONS

10.1 POWER ON/OFF SEQUENCE

Parameter	Symbol	Unit	min	Тур.	max
VDD rising Time	T1	ms	0.5		10
VDD Good to Signal Valid	T2	ms	30		90
Signal Valid to Backlight on	Т3	ms	200		
Backlight Power on time	T4	ms	0.5		
Backlight VDD Good to System PWM on	Т5	ms	10		
System PWM on to Backlight Enable on	Т6	ms	10		
Backlight Enable off to System PWM off	Т7	ms	0		
System PWM off to B/L Power Disable	Т8	ms	10		
Backlight Power off time	Т9	ms	1	10	30
Backlight off to signal Disable	T10	ms	200		
Signal Disable to Power Down	T11	ms	0		50
VDD Falling Time	T12	ms	1	10	30
Power Off	T13	ms	500		

Power Consumption

Input power specifications are as follows.

Item	Symbol	Min.	Тур.	Max.	Units	Note
Input Power Supply Voltage	V _{IN}	3.0	3.3	3.6	V	
Input Power Supply Current	I _{VIN}	-	-	217	mA	Black pattern [,] 60Hz
Input Inrush Current	I _{RUSH}	-	-	1.5	A	0.5ms rise time (10%~90%)
Input Power Voltage Ripple	V _{RPL}	-	-	200	mV	Vp-p

10.2 TIMING CHARACTERISTICS

Synchronization Method : DE only

Parameter	Symbol	Unit	Min.	Тур.	Max.
LVDS Clock Frequency <single></single>	f _{dck}	MHz	45	51.2	65
H Total Time	T _{hp}	clocks	1,324	1,344	1,364
H Active Time	HA	clocks	1,024	1,024	1,024
H Blanking Time	TH _{BLANK}	clocks	300	320	340
V Total Time	T_{vp}	lines	615	635	645
V Active Time	VA	lines	600	600	600
V Blanking Time	TV_{BLANK}	lines	15	35	45
V Frequency	f _v	Hz	55	60	65

Figure 7 DE-only timing mode

Timing Diagram of Interface Signal

Figure 8 LVDS Data Mapping

11. RELIABILITY TEST

ENVIRONMENTAL TEST FOR LCM						
NO.	ITEM	CONDITIONS	TIME PERIOD	REMARK		
1	High Temperature Storage	80°C	300HRS	Note1,4		
2	Low Temperature Storage	-30°C	300HRS	Note1,4		
3	High Temperature Operation	70°C	300HRS	Note2,4		
4	Low Temperature Operation	-20°C	300HRS	Note1,4		
5	High Temperature Humidity Storage	50℃ 85%RH	300HRS	Note2,4		
6	Temperature Cycle	-20°C→60°C (30min) (30min)	100CYCLE	Note1,4		

Note1 : Ta is the ambient temperature of samples.

- Note2 : Ts is the temperature of panel's surface.
- Note3 : In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.
- Note4 : Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Thermal Shock Test	-20℃~60℃, 1h/each cycle,100cycles	
Shock Test (Non-Operating)	50G,20ms,Half Sine Wave, (±X, ±Y,±Z)	
Vibration Test (Non-Operating)	1.5G ,10~200 Hz, x、y、z each axis/30min	
ESD test	Contact Discharge: ±8KV,150pF(330 Ω) ; Air Discharge: ±15KV,150pF(330 Ω)	Note 1

Note1: ESD class C: Performance could be recovered by reset if temporary failure happened.

12. PRECAUTIONS FOR USE

12.1 USE RESTRICTION

This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

12.2 HANDING PRECAUTION

- (1) Please mount LCD module by using mounting holes arranged in four corners tightly.
- (2) Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. CHEFREE does not warrant the module, if customers disassemble or modify the module.
- (3) If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid Crystal, and do not contact liquid crystal with skin. If liquid crystal contacts mouth or eyes, rinse out with water immediately. If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and Rinse thoroughly with water.
- (4) Disconnect power supply before handling LCD module
- (5) Refrain from strong mechanical shock and /or any force to the module.
- (6) Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature; etc otherwise LCD module may be damaged. It's recommended employing protection circuit for power supply.
- (7) Do not touch, push or rub the polarizer with anything harder than HB pencil lead. Use fingerstalls of soft gloves in order to keep clean display quality, when Persons handle the LCD module for incoming inspection or assembly.
- (8) When the surface is dusty, please wipe gently with absorbent cotton or other soft Material. When cleaning the adhesives, please use absorbent cotton wetted with a little Petroleum benzene or other adequate solvent.
- (9) Wipe off saliva or water drops as soon as possible. If saliva or water drops Contact with polarizer for a long time, they may causes deformation or color Fading.
- (10) Protection film must remove very slowly from the surface of LCD module to Prevent from electrostatic occurrence.
- (11) Because LCD module uses CMOS-IC on circuit board and TFT-LCD panel, it is Very weak to electrostatic discharge, Please be careful with electrostatic Discharge .Persons who handle the module should be grounded through adequate methods.
- (12) Do not adjust the variable resistor located on the module.

12.3 STORAGE PRECAUTION

- (1) Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- (2) The module shall not be exposed under strong light such as direct sunlight. Otherwise, Display characteristics may be changed.
- (3) The module should be stored in a dark place. It is prohibited to apply sunlight or fluorescent light in storage.

12.4 OPERATION PRECAUTION

- (1) Do not connect or disconnect the module in the "Power On" condition.
- (2) Power supply should always be turned on/off by 9.0 "Power on/off sequence"
- (3) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference should be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (4) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.

12.5 OTHERS

- (1) Ultra-violet ray filter is necessary for outdoor operation.
- (2) Avoid condensation of water which may result in improper operation or disconnection of electrode
- (3) If the module keeps displaying the same pattern for a long period of time, the image may be "sticked" to the screen.
- (4) This module has its circuitry PCB's on the rear side and should be handled carefully in order not to be stressed.

12.6 DISPOSAL

When disposing LCD module, obey the local environmental regulations.