

2.7 inch E-paper Display Series

WAA0270A2AAA7NXXX000

Product Specifications

Customer	Standard
Description	2.7" E-PAPER DISPLAY
Model Name	WAA0270A2AAA7NXXX000
Date	2025/02/12
Revision	1.0

Design Engineering					
Approval	Check	Design			

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	02.12.2025	New Creation	ALL	

CONTENTS

1.	Over View	6
2.	Features	6
3.	Mechanical Specification	6
4.	Mechanical Drawing of EPD Module	7
5.	Input/output Pin Assignment	8
6.	Electrical Characteristics	9
	6.1 Absolute Maximum Rating	9
	6.2 Panel DC Characteristics	10
	6.3 Panel AC Characteristics	11
	6.3.1 MCU Interface Selection	11
	6.3.2 MCU Serial Interface (4-wire SPI)	11
	6.3.3 MCU Serial Interface (3-wire SPI)	12
	6.3.4 Interface Timing	13
7.	Command Table	14
8.	Optical Specification	27
9.	Handling, Safety, and Environment Requirements	28
10.	Reliability Test	29

11.	Block Diagram	30
12.	Reference Circuit	31
13.	Matched Development Kit	32
14.	Typical Operating Sequence	33
	14.1 Normal Operation Flow	33
15.	Inspection condition	34
	15.1 Environment	34
	15.2 Illuminance	34
	15.3 Inspect method	34
	15.4 Display area	34
	15.5 Inspection standard	35
	15.5.1 Electric inspection standard	35
	15.5.2 Appearance inspection standard	36
16	. Packaging	.38
17	. Precautions	.39

1. Over View

WAA0270A2AAA7NXXX000 is an Active Matrix Electrophoretic Display (AM EPD), with front light panel. The display is capable to display image at 1-bit white, black full display capabilities. The 2.7inch active area contains 264×176pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2.Features

264×176 pixels display High contrast High reflectance Ultra wide viewing angle Ultra low power consumption Pure reflective mode Bi-stable display Commercial temperature range Landscape portrait modes Hard-coat antiglare display surface Ultra Low current deep sleep mode On chip display RAM Waveform can stored in On-chip OTP or written by MCU Serial peripheral interface available On-chip oscillator On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage I2C signal master interface to read external temperature sensor Built-in temperature sensor

With front light panel, 4 LEDs in serial, operating voltage: 12V

3.Mechanical Specifications

Parameter	arameter Specifications			
Screen Size	2.7	Inch		
Display Resolution	264(H)×176(V)	Pixel	Dpi:117	
Active Area	38.19×57.29	mm		
Pixel Pitch	0.217×0.217	mm		
Pixel Configuration	Rectangle			
Outline Dimension	45.8 (H)×70.42(V) ×1.58(D)	mm		
Weight	8.84±0.5	g		

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	0	N-Channel MOSFET Gate Drive Control	
3	RESE	Ι	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	0	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	Ι	Bus Interface selection pin	Note 5-5
9	BUSY	0	Busy state output pin	Note 5-4
10	RES#	Ι	Reset signal input. Active Low.	Note 5-3
11	D/C#	Ι	Data /Command control pin	Note 5-2
12	CS#	Ι	Chip select input pin	Note 5-1
13	SCL	Ι	Serial Clock pin (SPI)	
14	SDA	Ι	Serial Data pin (SPI)	PL
15	VDDIO	Р	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	Р	Power Supply for the chip	
17	V <mark>S</mark> S	Р	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	Р	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics 6.1 Absolute Maximum Rating

Parameter	S <mark>ymbol</mark>	Rating	Unit
L <mark>o</mark> gic supply voltage	VCI	-0.5 to +6.0	V
L <mark>o</mark> gic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

WINSTAR Distributed by www.texim-europe.com WAA0270A2AAA7NXXX000

Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	Vss			-	0	-	V
Logic supply voltage	V _{CI}		VCI	2.2	3.0	3.7	V
Core logic voltage	V _{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-		0.8 V _{CI}	-	-	V
Low level input voltage	V _{IL}	-		-	-	0.2 V _{CI}	V
High level output voltage	V _{он}	IOH = -100uA		0.9 VCI	-	-	V
Low level output voltage	Vol	IOL = 100uA			-	0.1 V _{CI}	V
Typical power	Р _{ТҮР}	$V_{CI} = 3.0 V$			9		mW
Deep sleep mode	P _{STPY}	$V_{CI} = 3.0 V$			0.003		mW
Typical operating current	Iopr_V _{CI}	V _{CI} =3.0V		-	3		mA
Full update time		25 °C			3		sec
Fast update time	-	25 °C			1.5		sec
Partial update time		25 °C			0.42		sec
Sleep mode current	Islp_V _{CI}	DC/ DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/ DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes:

1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.

2) The difference between different refresh methods:

Full refresh: The screen will flicker several times during the refresh process;

Fast Refresh: The screen will flash once during the refresh process;

Partial refresh: The screen does not flicker during the refresh process.

During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.

3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by WINSTAR DISPLAY.

6.3 Panel AC Characteristics

6.3.1 MCU Interface Selection

MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1 : Interface pins assignment under different MCU interface

	Pin Name						
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA	
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA	
3-wire serial peripheral interface (SPI) – 9 bits SPI	н	RES#	CS#	Ĺ	SCL	SDA	

Note: (1) L is connected to VSS and H is connected to VDDIO

6.3.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	\uparrow	Data bit	Н	L

Table 6-2 : Control pins status of 4-wire SPI

Note: (1) L is connected to VSS and H is connected to VDDIO

(2) ↑ stands for rising edge of signal

(3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 6-1 : Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS # is pulled low, the first byte sent is command byte, D/C# is pulled low. After com mand byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pu lled high. An 8-bit data will be shifted out on every clock falling edge. The serial da ta SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

Figure 6-2 : Read procedure in 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

	Table	e 6-3 : Control pins	status of 3-wire	SPI
Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	\uparrow	Command bit	Tie LOW	L
Write data	↑ (Data bit	Tie LOW	R L

Figure 6-3 : Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command by te, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1.After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

WINSTAR tributed by www.texim-europe.com WAA0270A2AAA7NXXX000

Figure 6-4 : Read procedure in 3-wire SPI mode

6.3.4 Interface Timing

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, CL=20pF

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fscl	SCL frequency (Write Mode)	(1 0)	(-)	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60	1221	1	ns
t _{CSHLD}	Time CS# has to remain low after the last falling edge of SCLK	65		-	ns
t _{cshigh}	Time CS# has to remain high between two transfers	100	-	-	ns
tsclhigh	Part of the clock period where SCL has to remain high	25		-	ns
tscllow	Part of the clock period where SCL has to remain low	25	-	-	ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	1.00	1.71	ns
t _{sihld}	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	142	14	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fscl	SCL frequency (Read Mode)	-	1-1	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100		-	ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50	-	-	ns
ссянісн	Time CS# has to remain high between two transfers	250	-	-	ns
tsclhigh	Part of the cloc <mark>k</mark> peri <mark>od where</mark> SCL has to remain high	180	-	-	ns
tscllow	Part of the cloc <mark>k</mark> period whe <mark>re</mark> SCL has to remain low	180	87	107	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	14	ns
SOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	-	0	(.	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

7. Command Table

Com	man	d Tal	ble		u =		8		<i>k</i>	a - 1					
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	ion		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti	ing		
0	1		A7	AG	A ₅	A4	A ₃	A ₂	A	Ao		A[8:0]= 12	27h [POR], 296 MU	х
0	1		0	0	0	0	0	0	0	As	-	MUX Gat	e lines se	tting as (A	[8:0] + 1).
0	1		0	0	0	0	0	B ₂	Bi	Bo	-	B [2:0] = (1	
			0		U			Dz				Gate scar	nning seq	uence and	direction
												B[2]: GD Selects th GD=0 [P0 G0 is the	ne 1st outj DR], 1st gate o	out Gate output cha	nnel, gate
												output see GD=1,	quence is	G0,G1, G	62, G3,
												G1 is the output set	1st gate o quence is	G1, G0, C	nnel, gate 33, G2,
												B[1]: SM Change s	canning o	order of ga	te driver.
												G0, G1, G	62, G32)	95 (left an	nd right gate
												SM=1, G0, G2, G4G294	94, <mark>G1,</mark> G3	,G295	
												B[0]: TB TB = 0 [P TB = 1, so	OR], scar	from G0 G295 to G	to G295 0.
				-											
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	Set Gate	driving vo	ltage	
0	1		0	0	0	A	A	Az	A	Ao	Control	A[4:0] = 0	0h [POR]		
	- 16		1. Sec. 1.	0.000	1.000	1.1		1000	0.000	AN COMPANY		VGH setti	ing from 1	0V to 20V	
												A[4:0]	VGH	A[4:0]	VGH
												00h	20	0Dh	15
												03h	10	0Eh	15.5
												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	11h	17
												07h	12	12h	17.5
												08h	12.5	13h	18
												07h	12	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												0Ah	13.5	17h	20
												0Bh	14	Other	NA
												0Ch	14.5		

WINSTAPptributed by www.texim-europe.com WAA0270A2AAA7NXXX000

Com	man	d Ta	ble											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Comm	nand		Description
0	0	04	0	0	0	0	0	1	0	0	Sourc	e Driving	voltage	Set Source driving voltage
0	1		A7	A6	A5	A4	A ₃	A ₂	A1	Ao	Contro	ol		A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	Be	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	1			B[7:0] = A8h [POR], VSH2 at 5V.
0	1		C7	Ce	C ₅	C ₄	C ₃	C ₂	C1	Co	1			C[7:0] = 32n [POR], VSL at -15V Remark: VSH1>=VSH2
AI7	VB[7]	= 1.	1				1	A	71/B[71 = 0).			C[7] = 0.
VSI	H1/V	SH2	volta	ge se	tting	from	2.4V	VS	SH1/	/SH2	voltag	e setting	from 9V	VSL setting from -5V to -17V
IO 8	B[7:0]	VSH	1/VSH2	A/E	3[7:0]	VSH1	/VSH2		A/BI7:01	VS	H1/VSH2	A/B[7:0]	VSH1/VSH	
	8Eh	1	2.4	A	Fh	5	.7		23h		9	3Ch	14	0Ah -5
	8Fh	6	2.5	E	30h	5	i.8		24h		9.2	3Dh	14.2	0Ch -5.5
-	90h 91h	0	2.6	E	31h 32h	0	6		25h	-	9.4	3Eh 3Fh	14.4	0Eh -6
1	92h		2.8	E	33h	e	6.1		27h		9.8	40h	14.8	10h -6.5
	93h		2.9	E	34h	e	1.2		28h		10	41h	15	12h -7
	94h 95h		3	F	36h 36h	6	.3	-	29h 2Ah	-	10.2	42h 43h	15.2	16h -8
	96h		3.2	E	37h	6	5.5		2Bh	- 5	10.6	44h	15.6	18h -8.5
	97h		3.3	E	38h	6	1.6		2Ch	-	10.8	45h	15.8	1Ah -9
	98h 99h	- 3	3.4	E	19h IAh	6	i.7		2Dh 2Eh	-	11	46h 47h	16	1Ch -9.5
	9Ah	1	3.6	E	Bh	6	.9		2Fh		11.4	48h	16.4	1Eh -10
3	9Bh		3.7	В	ICh		7		30h		11.6	49h	16.6	201 -10.5 22h -11
8	9Ch		3.8	B	IDh	7	.1		31h	-	11.8	4Ah 4Bh	16.8	
1	9Eh		4	E	BFh	7	.3		33h		12.2	Other	NA	26h -12
	9Fh	1	4.1	0	COh	7	.4		34h		12.4			28h -12.5
N	A0h	1	4.2	-	C1h	7	.5		35h	-	12.6			2Ah -13
	A2h	1 3	4.4	0	211 C3h	7	.0		37h	-	13			2Ch -13.5
16	A3h	1 2	4.5	C	24h	7	.8		38h		13.2			30h -14.5
1 10	A4h	1 8	4.6	6	5h	1	.9		391	_	13.4			32h -15
	A5h A6h	8	4.7	0	26h 17h	8	8	1	3Ah 3Bh	-	13.6			34h -15.5
1	A7h	1 3	4.9	0	C8h	8	.2	<u> </u>						36h -16
3	A8h		5	0	9h	8	.3							38h -16.5
3	A9h	8	5.2	0	Bh	8	.4							Other NA
	ABh	1	5.3	C	Ch	8	.6							
	ACh	1	5.4	0	Dh	8	.7							
	ADh	-	5.6	0	ther	N	IA							
32	890.724	-		1			200							
			an a											
0	0	08	0	0	0	0	1	0	0	0	Initial	Code Set	tting	Program Initial Code Setting
											OTPF	rogram		The command required CLI/ENI=1
														Refer to Register 0x22 for detail
														BUSY pad will output high during
														operation.
			17 25 1			1 725							-	
0	0	09	0	0	0	0	1	0	0	1	Write	Register	for Initial	Write Register for Initial Code Setting
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Code	Setung		A[7:0] ~ D[7:0]: Reserved
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀				Details refer to Application Notes of Initi
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C1 C0 Code Setting				Code Setting
0	1		D7	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₁ D ₀				
0	0	0A	0	0	0	0	1	0	1	0	Read Code	Register Setting	for Initial	Read Register for Initial Code Setting
0 0 0	1 1 0	0A	C7 D7	0 0	C5 D5	C4 D4	C ₃ D ₃	C2 D2	C1 D1	C ₀ D ₀	Read Register for Initial Code Setting			Code Setting

WINSTAR tributed by www.texim-europe.com WAA0270A2AAA7NXXX000

/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descriptio	n
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enab	le with Phase 1, Phase 2 and Phas
0	1		1	A	A5	A4	A ₃	A2	A1	Ao	Control	for soft start of	current and duration setting.
0	1		1	B6	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		A[7:0] -> Soft	start setting for Phase1
0	1		1	C6	C ₅	C ₄	C ₃	C ₂	C1	Co		= 8 B[7:0] -> Soft	start setting for Phase2
0	1		0	0	D5	D4	D3	D ₂	D1	Do		= 9	Ch [POR]
20	10						1.20	1000		1000		c[7:0] -> Soft = 9	6h [POR]
												D[7:0] -> Dur	ation setting
												Bit Des	cription of each byte:
												A[6:0] /	B[6:0] / C[6:0]:
												Bit[6:4]	Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												Bit[3:0]	Min Off Time Setting of GDR
												0000	
													NA
												0011	26
												0100	2.0
												0101	3.2
												0110	3.9
						`						0111	4.6
												1000	5.4
												1001	6.3
							1					1010	1.3
												1011	0.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	10.0
												D[5:0]: D[5:4]: D[3:2]: D[1:0]:	duration setting of phase duration setting of phase 3 duration setting of phase 2 duration setting of phase 1
												Bit[1:0]	Duration of Phase
												00	[Approximation]
												01	20me
												10	20ms
												11	40ms
_													
	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sle	ep mode Control:
	1		0	0	0	0	0	0	A1	Ao		A[1:0] :	Description
												00	Normal Mode [POR]
												01	Enter Deep Sleep Mode
												11	Enter Deep Sleep Mode 2
												After this enter Dee keep outp Remark: To Exit D	command initiated, the chip op Sleep Mode, BUSY pad v out high. eep Sleep mode, User requ

WINSTAR stributed by www.texim-europe.com WAA0270A2AAA7NXXX000

Com	Ammand Table N# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description		
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence		
0	1		0	0	0	0	0	A2	A1	Ao		A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X decrement, 10 –Y increment, X decrement, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.		
-				-		_	1 - 1							
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high.		
												Note: RAM are unaffected by this command.		
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BLISX pad will output high during		
												detection. The detection result can be read from the Status Bit Read (Command 0x2F).		
0	1		0	A6	A5	A4	0	A2	Aı	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.		

WINSTA Muted by www.texim-europe.com WAA0270A2AAA7NXXX000

Com	man	d Ta	ble									W
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	0.0	0	0	0	0	0	A ₂	A ₁	Ao	-	A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect
												AI2:01 VCI level
												011 2.2V
												100 2.3V
												101 24V
												110 2.5V
												111 2.6V
												Other NA
0 0 0 0	0 1 0 1	18 1A	0 A7 0 A7	0 A6 0 A6	0 A5 0 A5	1 A4	1 A3 1 A3	0 A2 0 A2	0 A1 1 A1	0 Ao 0	Temperature Sensor Control Temperature Sensor Control (Write to temperature register)	The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). Temperature Sensor Selection A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor Write to temperature register. A[7:0] = 7Fh [POR]
		1				12 - 1 41 - 1	0					
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A7	A	As	A4	A ₃	A2	A1	Ao	Control (Read from	
								Ĩ.			temperature register)	
0	0	10	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		Δ-7	Ac	Δ _r	Δ.	Δ.	Δ.	Δ.	A	Control (Write Command	sensor.
0	-		D.			7 4		n 2		Pu D	to External temperature	A[7:0] = 00h [POR],
0	1		D7	D6	D5	D4	D3	D2	DI	D 0	sensor)	B[7:0] = 00h [POR],
	1			UB								$ \begin{array}{l} A[7:6] \\ \hline A[7:6] \\ \hline A[7:6] \\ \hline A[7:6] \\ \hline O0 \\ \hline Address + pointer \\ \hline O1 \\ \hline Address + pointer + 1st parameter \\ \hline O1 \\ \hline Address + pointer + 1st parameter \\ \hline O1 \\ \hline Address + pointer + 1st parameter \\ \hline O1 \\ \hline Address + pointer + 1st parameter \\ \hline O1 \\ \hline Address \\ \hline$
0	0	1F	0	0	0	1	1	1	1	1	IC revision Read	Read IC revision [POR 0x0D]
1	1	-	A7	As	As	A	A3	A	A	An		an new new work and an and a new and a structure of \$1,000 € 1,000 and \$1,000 and \$20,000 € .
- 1993) - 1993	3.		1. M	1 . 0	10		1.0.00	. 4	27	0	l	

WINSTARistributed by www.texim-europe.com WAA0270A2AAA7NXXX000

Com	mmand Table ## D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description		
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.		
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update		
0	1		A7	A6	A5	A4	Аз	A2	A1	Ao	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]		
0	1		B7	0	0	0	0	0	0	0		A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0] BW RAM option 0000 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content as 0 0100 Bypass RAM content as 0 1000 Inverse RAM content B[7] Source Output Mode 0 0 Available Source from S0 to S175 1 Available Source from S8 to S167		
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	 After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0 		

WINSTA Pstributed by www.texim-europe.com WAA0270A2AAA7NXXX000

Com	man	d Ta	ble		5								
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0 A7	0 A6	1 A5	0 A4	0 A3	0 A2	1 A1	0 A0	Display Update Control 2	Display Update Sequence Opti Enable the stage for Master Act A[7:0]= FFh (POR)	on: tivation
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal ➔ Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal Load LUT with DISPLAY Mode 2 Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	В1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	B9
						2						Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal Enable Analog Display with DISPLAY Mode 2 Disable Analog Disable OSC	CF
											E	Enable clock signal > Enable Analog > Load temperature value > DISPLAY with DISPLAY Mode 1 > Disable Analog > Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entrie written into the RED RAM until command is written. Address p advance accordingly.	es will be another pointers will
	50			y)			1					For Red pixel: Content of Write RAM(RED) = For non-Red pixel [Black or Wh Content of Write RAM(RED) =	= 1 hite]: = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read MCU bus will fetch data from F According to parameter of Reg to select reading RAM0x24/ R/ until another command is writte Address pointers will advance accordingly. The 1 st byte of data read is dur	on the RAM. ister 41h AM0x26, en. nmy data.

WINSTAR istributed by www.texim-europe.com WAA0270A2AAA7NXXX000

Com	nman	d Ta	ble		. v						W	-			
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descript	tion		
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VC for durat VCOM v The sen register The con ANALOO Refer to BUSY p operatio	COM sensi tion defined value. sed VCOV nmand requ GEN=1 Register 0 ad will outp n.	ng condi d in 29h I I voltage uired CLI x22 for c but high c	tions and hold before reading is stored in KEN=1 and detail. during
0	0	20	0	0	1	0	1	0	0	1	VCOM Sanca Duration	Stabling	time botu	oon onto	ring VCOM
0	1	29	0	1	1	0	1	0	0 A		VCOW Sense Duration	sensing	mode and	reading	acquired.
U			U		U	U	A3	A2		A		A[3:0] = VCOM s	9h, duratic sense dura	on = 10s. tion = (A	[3:0]+1) sec
0	0	24	0	0	1	0	1	0	1	0	Program VCOM OTP	Program		aister int	OTP
	U	24	5	Ū				U				The con Refer to BUSY p	nmand requ Register 0 ad will outp	uired CLI x22 for c out high c	KEN=1. letail. during
0		20	0			0		1	0	0	Write VCOM register	Mirito M		or from A	ACI Linterface
0	1	20	A7	A6	A5	A4	A ₃	A2	A1	Ao	while vCOM register	A[7:0] =	00h [POR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
											1	10h	-0.4	4Ch	-1.9
												14n	-0.5	50n	-2
												18n	-0.6	54N	-2.1
												20h	-0.7	50h	-2.2
												2011 24h	-0.0	60h	-2.5
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA

WINSTARstributed by www.texim-europe.com WAA0270A2AAA7NXXX000

Con	ommand Table W# D/C# Hex D7 D6 D5 D4 D2 D1 D0 Command Description													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description		
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read Register for Display Option:		
1	1		A7	A	A5	A4	Аз	A ₂	A1	Ao	Display Option	AIT OF VOON OTD Selection		
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀]	(Command 0x37 Byte A)		
1	1		C7	C ₆	C 5	C4	C ₃	C ₂	C1	Co]	(command oxer, byter)		
1	1		D ₇	D ₆	D ₅	D4	D ₃	D ₂	D1	D ₀		B[7:0]: VCOM Register		
1	1		E7	E ₆	E ₅	E4	E ₃	E ₂	E1	E ₀]	(Command 0x2C)		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		C[7:0]~G[7:0]: Display Mode		
1	1		G7	G ₆	G ₅	G4	G ₃	G ₂	G ₁	Go]	(Command 0x37, Byte B to Byte F)		
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho		[5 bytes]		
1	1		I7	16	15	14	13	12	11	lo		H[7:0]~K[7:0]: Waveform Version		
1	1		J ₇	J ₆	J ₅	J4	J ₃	J ₂	J ₁	Jo		(Command 0x37, Byte G to Byte J)		
1	1		K ₇	K ₆	K5	K4	K ₃	K ₂	K ₁	Ko	et.	[4 bytes]		
				Contract of					[1000				
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10 Byte User ID stored in OTP:		
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	-	Byte J) [10 bytes]		
1	1	e	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	-			
1	1	7 I I	C7	C ₆	C5	C ₄	C ₃	C ₂	C ₁	C ₀	-			
1	1		D7	D ₆	D5	D ₄	D3	D ₂	D ₁	D ₀	-			
1	1	s	E7	E ₆	E5	E4	E3	E ₂	E1	Eo	-			
1	1	i - 1	F7	F6	F5	F4	F3	F2	F1	Fo	-			
1	1	_	G7	G ₆	G ₅	G4	G ₃	G ₂	G ₁	G ₀	-			
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho	-			
1	1	2 - 3	17	16	15	4	13	12	1	lo				
1	1	05	J7	Je	J ₅	J4	J ₃	J ₂	J ₁	Jo				
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]		
1	1		0	0	A5	A4	0	0	A1	Ao		0: Ready		
												1: Not Ready		
												A[4]: VCI Detection flag [POR=0]		
												1: VCI lower than the Detect level		
												A[3]: [POR=0]		
												A[2]: Busy flag [POR=0]		
												1: BUSY		
												A[1:0]: Chip ID [POR=01]		
												Remark: A[5] and A[4] status are not valid after		
												RESET, they need to be initiated by		
												command 0x14 and command 0x15		
								-				respectively.		
		00	-		1.0520						-			
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	The contents should be written into RAM		
												before sending this command.		
												The command required CLKEN=1.		
												BUSY pad will output high during		
												operation.		

WINSTAR ributed by www.texim-europe.com WAA0270A2AAA7NXXX000

Com	man	d Ta	ble		1 77		75 - 171		a 1	5	1.1	
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during
0 0 0 0	0 1 1 1 1	32	0 A7 B7 :	0 A6 B6 :	1 A5 B5 :	1 A4 B4 :	0 A3 B3 :	0 A2 B2 :	1 A1 B1 :	0 Ao Bo :	Write LUT register	operation. Write LUT register from MCU interface [227 bytes], which contains the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR and XON[nXY] Refer to Session 6.7 WAVEFORM SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680A application note. BUSY pad will output high during operation.
0	0	25	0	0	1	1	0	1	0	1	CPC Status Road	CRC Status Road
1	1	30	Are	A.,	Δ	A	Δ	Are	A	Δ.	CINC Status Read	A[15:0] is the CRC read out value
1	1	-	A7	Ac	As	A	A	A	A.	A		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail
												BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B 4	B ₃	B ₂	B ₁	Bo		1: Spare
0	1		C 7	C ₆	C ₅	C 4	C ₃	C2	C1	Co	_	
0	1		D7	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E4	E ₃	E ₂	E1	E ₀	-	D[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[23:16]
0	1		0	F6	0	0	F3	F2	F1	Fo	-	0: Display Mode 1
0	1		G7	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go	-	1: Display Mode 2
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H1	Ho	-	F[6]: Ping-Pong for Display Mode 2
0	1		17 J7	J ₆	15 J5	 J4	13 J ₃	J ₂	J ₁	Jo Jo		0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not suppor for Display Mode 1

WINSTARstributed by www.texim-europe.com WAA0270A2AAA7NXXX000

Com	man	d Ta	ble										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	ξ.
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Regist	er for User ID
0	1	1.2.625	A7	A	A ₅	A4	A ₃	A ₂	A ₁	Ao		A[7:0]]~J[7	:0]: UserID [10 bytes]
0	1		B ₇	B6	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	-	Domarka: Al	7:01- 1(7:0) can be stared in
0	1		C7	C ₆	C ₅	C4	C ₃	C ₂	C1	Co	-	OTP	[7:0]~J[7:0] can be stored in
0	1		D ₇	De	D ₅	D ₄	D ₃	D ₂	D1	Do	-		
0	1		E7	Es	Es	E4	E3	E ₂	E	Eo	-		
0	1		F7	F ₆	E ₅	F4	E ₃	F ₂	F1	Fo	-		
0	1		G7	Ge	G ₅	G	Ga	G ₂	G	Go	-		
0	1		Hz	He	Hs	Ha	Ha	Ha	H ₁	Ho			
0	1		17	le	15	4	12	12	1.	10	-		
0	1		.17	le	15	14	.13	.12	.11	Jo	-		
-		_	0/	00	05	04	03	02	01	00			
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program	m mode
0	1		0	0	0	0	0	0	A ₁	Ao		A[1:0] = 00: A[1:0] = 11: programmin : User is req reference co	Normal Mode [POR] Internal generated OTP g voltage uired to EXACTLY follow the ode sequences
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	Select borde	r waveform for VBD
0	1		A7	As	Δ5	A	0	0	A1	An		A[7:0] = C0h	[POR], set VBD as HIZ.
	1		-	10	~~	4.44	U	U	(AN)	10		A [7:6] :Sele	ect VBD option
												A[7:6]	Select VBD as
												00	Defined in A[2] and A[1:0]
												01	Fix Level,
													Defined in A[5:4]
												10	VCOM
												TIPOR	HIZ
												A [5:4] Fix L	evel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
												A [1:0] GS T VBD Level S 00b: VCOM 10b: VSL; 11	ransition setting for VBD election: ; 01b: VSH1; lb: VSH2
												A[1:0]	VBD Transition
												00	LUT0
												01	LUT1
												10	LUT2
												11	LUT3
~	•	0.5	•			100		100	-			0.4	1 1
0	0	3F	0	0	1	1	1		1	1	End Option (EOPT)	Data butos o	bould be set for this
0	1		A7	As	A ₅	A4	Аз	A ₂	A1	A ₀ Data bytes should be set for this command or programmed into V setting.		programmed into Waveform	
												22h Norr	nal.
												07h Sour	rce output level keep
												prev	ious output before power off

WINSTARstributed by www.texim-europe.com

Com	nman	d Ta	ble		,										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descript	ion		
0	0	41	0	0	0	0	0	0	0	1 Ao	Read RAM Option	Read RAM Option A[0]= 0 [POR] 0 : Read RAM corresponding to RAM0x24 1 : Read RAM corresponding to RAM0x26		to to	
89	1		2 			1 0000		1	r						A PROVIDE
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the	ne start/en	d position	s of the
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A	Start / End position	window a	iddress in t	the X dire	ction by an
0	1		0	0	B ₅	B4	B ₃	B ₂	B ₁	Bo		A[5:0]: XSA[5:0], XStart, POR = 00h B[5:0]: XEA[5:0], XEnd, POR = 15h			
0	0	15	0	1	0	0	0	1	0	1	Cat Dam V addraga	Chaoify H	no start/on	d position	a of the
0	0	45	0	1	0	0	0	1	0	I A	Start / End position	window a	ddress in	the Y dire	ction by an
0	1	-	A7	A ₆	A5	A4	A ₃	A ₂	A1	A ₀	-	address	unit for RA	M	onon by an
0	1		0	0	0	0	0	0	0	A8					
0	1	-	B ₇	B ₆	B ₅	B4	B ₃	B ₂	B ₁	Bo		A[8:0]: YSA[8:0], YStart, POR =		R = 000h	
0	1		0	0	0	0	0	0	0	B ₈		B[8:0]: 11	=A[8:0], YE	ina, POF	k = 12/n
0	0	46	0 A7	1 A6	0 A5	0 A4	0	1 A2	A1	0 Ao	Auto Write RED RAM for Regular Pattern	Auto Write RED RAM for Regular I A[7:0] = 00h [POR] A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction		ular Patter	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
											E	A[2:0]: St Step of al according A[2:0]	ep Width, ter RAM ir to Source Width	POR= 000 X-directi A[2:0]	on Width
												000	8	100	128
												001	16	101	176
												010	32	110	NA
												011	64	111	NA
												BUSY pa operation	d will outp	ut high du	ring

Com	man	d Ta	ble				//			0		10					
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	ion				
0	0	47	0 A7	1 A ₆	0 As	0 A4	0	1 A2	1 A1	1 Ao	Auto Write B/W RAM for Regular Pattern	Auto Write B/W RAM for Regular Pattern A[7:0] = 00h [POR] A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction according to Gate					
												A[6:4]	Height	A[6:4]	Height		
												000	8	100	128		
												001	16	101	256		
												010	32	110	296		
												011	64	111	NA		
												A[2:0] 000 001	Width 8 16	A[2:0] 100 101	Width 128 176		
												010	32	110	NA		
						[]					010	64	111	NA			
												During op high.	eration, B	USY pad	will output		
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi	al settings	for the R	AM X		
0	1		0	0	A5	A4	A ₃	A ₂	A1	Ao	counter	address i	n the addr	ess count	er (AC)		
			<u>, h</u>			<u> </u>						A[5.0]. 00	in [POR].				
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initi	al settings	for the R	AM Y		
0	1		A7	AG	A5	A4	Аз	A ₂	A1	Ao	counter	address i	n the addr	ess count	er (AC)		
0	1		0	0	0	0	0	0	0	A ₈	1	A[8:0]: 00	ion [POR].				
0	0	7F	0	1	1	1	1	1	1	1	NOP	This com does not module. However Frame Me Comman	mand is ar have any o it can be u emory Wri ds.	n empty co effect on t used to ter te or Read	ommand; i he display minate I		

8.Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	I	%	8-1
CR	Contrast Ratio	Indoor	8 :1		-		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	-	sec	
Life		Topr		1000000times or 5years			

Notes:

8-1. Luminance meter: Eye-One Pro Spectrophotometer.

8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

8-3 WS: White state, DS: Dark state

9. Handling, Safety and Environment Requirements

Warning						
The display glass may break when it is dropped or bumped on a hard surface.						
Handle with care. Should the display break, do not touch the electrophoretic						
material. In case of contact with electrophoretic material, wash with water and						
soap.						
Caution						
The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.						
Disassembling the display module can cause permanent damage and invalidates the warranty agreements.						
Observe general precautions that are common to handling delicate electronic						
components. The glass can break and front surfaces can easily be damaged.						
Moreover the display is sensitive to static electricity and other rough						
environmental conditions.						
Data sheet status						
Product specification This data sheet contains final product specifications.						
Limiting values						
Limiting values given are in accordance with the Absolute Maximum Rating						
System (IEC						
134).Stress above one or more of the limiting values may cause permanent						
damage to the device. These are stress ratings only and operation of the						
device a <mark>t</mark> these or <mark>a</mark> t any other conditions above those given in the						
Characte <mark>r</mark> istics sections of the specification is not implied. Exposure to limiting						
values for extended periods may affect device reliability.						
Application information						
Where application information is given, it is advisory and does not form part of the specification.						

10.Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=70°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=50°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+70 ° C 30 min] : 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m ² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note:

Put in normal temperature for 1hour after test finished, display performance is ok.

WINSTMented by www.texim-europe.com WAA0270A2AAA7NXXX000

11. Block Diagram

12. Reference Circuit

Par <mark>t</mark> Name	Requirements for spare part					
C1-C12	0603/0 <mark>80</mark> 5; X5R/X7R;Voltage Rating:≥25V					
R1、R2	0603/0805;1% variation,≥0.05W					
	MBR0530: 1)Reverse DC Voltage≥30V 2)Io≥500mA					
27-10	3)Forward voltage ≤430mV					
01	Si1308EDL:1)Drain-Source breakdown voltage≥30V					
QI	2)Vgs(th)≤1.5V 3)Rds(on)≤400mΩ					
L1	refer to NR3015: Io=500mA(max)					
P1	24pins,0.5mm pitch					

13. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh blackwhite E-paper Display and three-color (black, white and red/Yellow) WINSTAR Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect. DESPI Development Kit consists of the development board and the pinboard.

14.Typical Operating Sequence

14.1 Normal Operation Flow

15.Inspection condition 15.1 Environment

Temperature: $25\pm3^{\circ}$ C Humidity: $55\pm10^{\circ}$ RH

15.2 Illuminance

Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 30°surround.

15.3 Inspection method

15.5 Inspection standard

15.5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	$D \le 0.25 \text{ mm}$, Allowed $0.25 \text{ mm} < D \le 0.4 \text{ mm} \circ N \le 3$, and $D = 0.4 \text{ mm} \circ N \le 3$, and $D = 0.4 \text{ mm} \circ N \le 3$, and 0.4 mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	$L \rightarrow \downarrow W$ L ≤ 0.6 mm, W ≤ 0.2 mm, N ≤ 1 L ≤ 2.0 mm, W > 0.2 mm, Not Allow L > 0.6 mm, Not Allow		Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	PE
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	$\begin{array}{c} & \downarrow \\ & \downarrow \\ D = (L+W)/2 \\ D \leq 0.25 \text{mm}, \text{ Allowed} \\ 0.25 \text{mm} < D \leq 0.4 \text{mm}, \text{ N} \leq 3 \\ D > 0.4 \text{mm}, \text{ Not Allow} \end{array}$	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	x ≤ 3 mm, Y ≤ 0.5 mmAnd without affecting the electrode is permissible x ≤ 3 mm $\leq 10^{10}$ $\leq 10^{10}$ 2mm $\leq 10^{10}$ ≤ 1	MI	Visual / Microscope	Zone A Zone B
5	TFT Cracks	Not Allow	МА	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/ allow	MI	Visual / Microscope	Zone A / Zone B
7	FPC broken/ Goldfingers xidation/ scratch	Not Allow	МА	Visual / Microscope	Zone B

15.5.2 Appearance inspection standard

8	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: $X \leq 3$ mm, $Y \leq 0.3$ mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
9	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
10	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm _☉ n≤5	MI	Visual / Ruler	Zone B
11	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
12	Silicon glue	Thickness \leq PS surface(With protect film): Full cover the IC; Shape: The width on the FPC \leq 0.5mm (Front) The width on the FPC \leq 1.0mm (Back) smooth surface,No obvious raised.	MI	Visual Inspection	
13	Warp degree (TFT substrate)	t≤2.0mm	MI	Ruler	PE
14	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

16. Packing

TBD

17. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.

Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Texim Europe B.V. its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Texim"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Texim makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product.

It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time.

All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts.

Please contact us if you have any questions about the contents of the datasheet.

This may not be the latest version of the datasheet. Please check with us if a later version is available.

Headquarters & Warehouse

Elektrostraat 17 NL-7483 PG Haaksbergen The Netherlands

T:	+31 (0)53 573 33 33
E:	info@texim-europe.com
Homepage:	www.texim-europe.com

The Netherlands

Elektrostraat 17 NL-7483 PG Haaksbergen

T: +31 (0)53 573 33 33 E: nl@texim-europe.com

Belgium

Zuiderlaan 14, box 10 B-1731 Zellik

T: +32 (0)2 462 01 00 E: belgium@texim-europe.com

UK & Ireland

St Mary's House, Church Lane Carlton Le Moorland Lincoln LN5 9HS

T: +44 (0)1522 789 555 E: uk@texim-europe.com

Germany Bahnhofstrasse 92 D-25451 Quickborn

T: +49 (0)4106 627 07-0 E: germany@texim-europe.com

Germany

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 E: muenchen@texim-europe.com

Austria Warwitzstrasse 9 A-5020 Salzburg

T: +43 (0)662 216 026 E: austria@texim-europe.com

Nordic Stockholmsgade 45 2100 Copenhagen

T: +45 88 20 26 30 E: nordic@texim-europe.com

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 E: italy@texim-europe.com

2025

www.texim-europe.com