

4.2 inch E-paper Display Series

WAA0420A2ADB5NXXX000

Product Specifications

Customer	Standard
Description	4.2" E-PAPER DISPLAY
Model Name	WAA0420A2ADB5NXXX000
Date	2025/02/14
Revision	1.0

Design Engineering				
Approval Check Design				

WINSTAR Display 2/40 4.2 inch Series

CONTENTS

1.	Over View	6
2.	Features	6
3.	Mechanical Specification	6
4.	Mechanical Drawing of EPD Module	7
5.	Input/output Pin Assignment	8
6.	Electrical Characteristics	9
	6.1 Absolute Maximum Rating	9
	6.2 Panel DC Characteristics	10
	6.3 Panel AC Characteristics	11
	6.3.1 MCU Interface Selection	11
	6.3.2 MCU Serial Interface (4-wire SPI)	11
	6.3.3 MCU Serial Interface (3-wire SPI)	12
	6.4.4 Interface Timing	13
7.	Command Table	14
8.	Optical Specification	28
9.	Handling, Safety, and Environment Requirements	28
10.	Reliability Test	29

11.	Block Diagram	30
12.	Reference Circuit	31
13.	Matched Development Kit	32
14.	Typical Operating Sequence	33
	14.1 Normal Operation Flow	33
	14.2 Normal Operation Reference Program Code	34
15.	Inspection condition	35
	15.1 Environment	35
	15.2 Illuminance	35
	15.3 Inspect method	35
	15.4 Display area	35
	15.5 Inspection standard	
	15.5.1 Electric inspection standard	36
	15.5.2 Appearance inspection standard	37
16.	Packaging	39
17.	Precautions	40

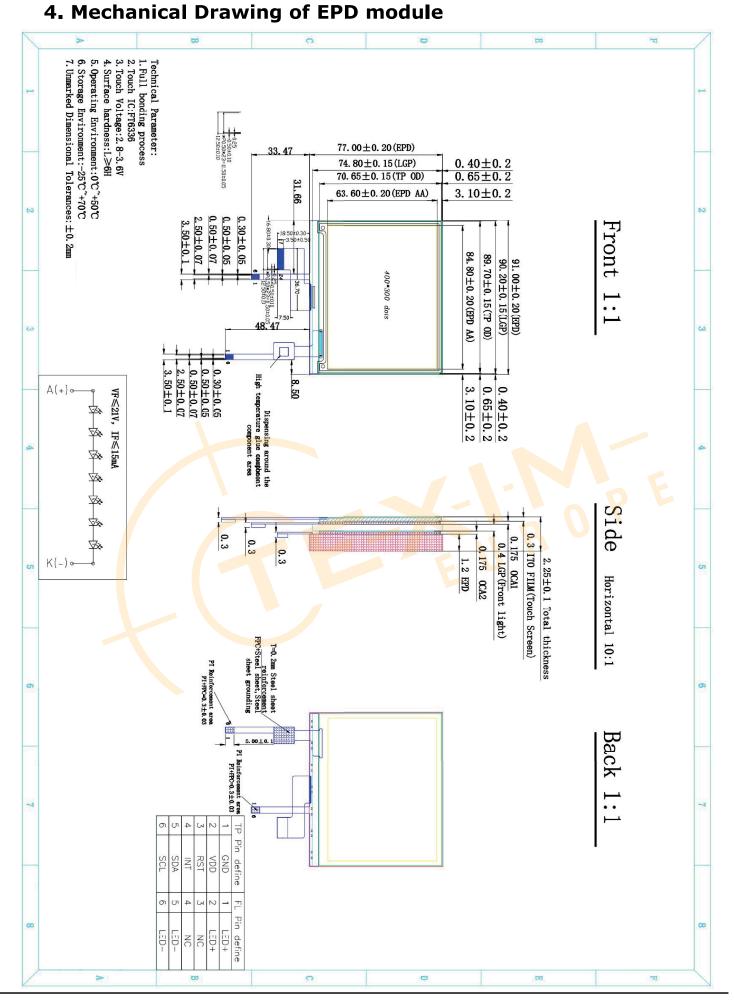
REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	02.14.2025	New Creation	ALL	

WINSTAR Display 5/40 4.2 inch Series

1. Over View

WAA0420A2ADB5NXXX000 is an Active Matrix Electrophoretic Display (AM EPD), with front light panel and capacitive touch panel. The display is capable to display images at 1-bit white, black full display capabilities. The 4.2inch active area contains 400×300 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.


2.Features

- 400×300 pixels display
- High contrast High reflectance
- Ultra wide viewing angle Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor
- Support partial update mode
- Built-in temperature sensor

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	4.2	Inch	
Display Resolution	400(H)×300(V)	Pixel	Dpi:120
Active Area	84.8×63.6	mm	
Pixel Pitch	0.212×0.212	mm	
Pixel Configuration	Rectangle		
Outline Dimension	91 (H)×77 (V) ×2.25(D)	mm	
Weight	22.4	g	

4. Machanical Duanting of EDD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 54
10	RES#	Ι	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

WINSTAR Display 8/40 4.2 inch Series

I = Input Pin, O = Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State MCU Interface				
L	4-lines serial peripheral interface(SPI) - 8 bits SPI			
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI			

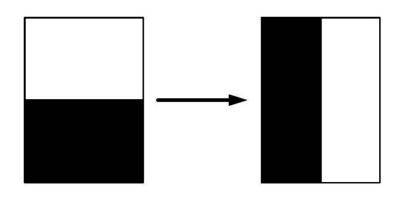
6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note: 1. Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

WINSTAR Display 9/40 4.2 inch Series


6.2 DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C

Parameter	Symbol	Conditions	Applica ble pin	Min.	Typ.	Max	Units
Single ground	V_{SS}	-		-	0	-	V
Logic supply voltage	V_{CI}	-	VCI	2.2	3.3	3.7	V
Core logic voltage	$ m V_{DD}$		VDD	1.7	1.8	1.9	V
High level input voltage	$V_{ m IH}$	-	-	$0.8~\mathrm{V_{CI}}$	-	-	V
Low level input voltage	V_{IL}	-	-	-	-	0.2 V _{CI}	V
High level output voltage	V_{OH}	IOH = -100uA	-	0.9 VCI	-	-	V
Low level output voltage	$ m V_{OL}$	IOL = 100uA	-	-	-	$0.1~V_{CI}$	V
Typical power	P_{TYP}	V _{CI} =3.0V	-	-	18.48	-	mW
Deep sleep mode	P _{STPY}	V _{CI} =3.0V	-	-	0.003	0.0165	mW
Typical operating current	Iopr_V _{CI}	V _{CI} =3.0V	-	-	5.6	-	mA
Full/Fast/Partial update	-	25 °C	-	-	2/1.5/0.3	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain	-	-	2	-	uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off No clock No input load Ram data not retain			2	5	uA

Notes:

- 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.
- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3.The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by WINSTAR DISPLAY

WINSTAR Display 10/40 4.2 inch Series

6.3AC Characteristics

6.3.1 MCU Interface Selection

The IC can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1: Interface pins assignment under different MCU interface

MCU Interface	Pin Name						
	BS1	RES#	CS#	D/C#	SCL	SDA	
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA	
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	RES#	CS#	Ĺ	SCL	SDA	

Note: (1) L is connected to VSS and H is connected to VDDIO

6.3.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Table 6-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	1	Data bit	Н	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

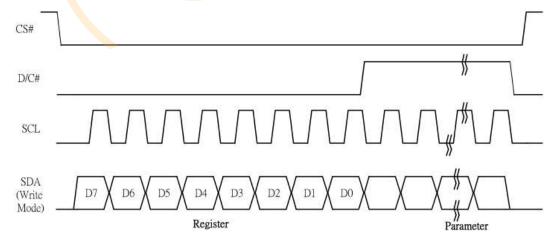


Figure 6-1: Write procedure in 4-wire SPI mode

6.3.3 MCU Serial Peripheral Interface (3-wire SPI)

MCU Serial Peripheral Interface (3-wire SPI) The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C#bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Table 6-3: Control pins status of 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	Tie LOW	L
Write data	<u></u>	Data bit	Tie LOW	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal

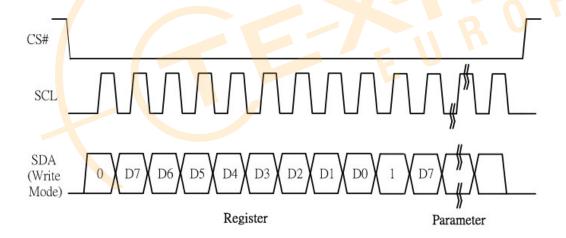
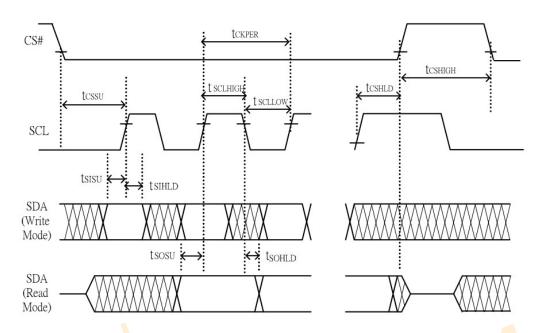



Figure 6-3: Write procedure in 3-wire SPI

6.4.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Write mode

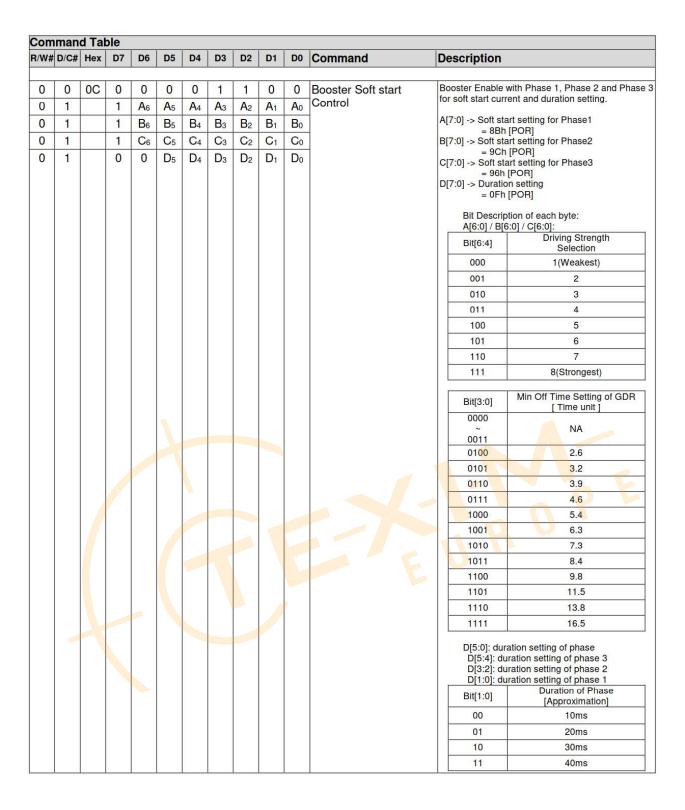
Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Write Mode)	61 4 5	-	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	TBD		0.5	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	TBD	-	-	ns
tcshigh	Time CS# has to remain high between two transfers	TBD	-	-	ns
tsclhigh	Part of the clock period where SCL has to remain high	TBD	-	-2	ns
tscllow	Part of the clock period where SCL has to remain low	TBD	-	-	ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	TBD	-	-	ns
tsihld	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	TBD		S = :	ns

Read mode

Parame <mark>te</mark> r	Min	Тур	Max	Unit
SCL frequency (Read Mode)	(40)	-	2.5	MHz
Time CS# has to be low before the first rising edge of SCLK	TBD	5	5	ns
Time CS# has to remain low after the last falling edge of SCLK	TBD	- 1	8	ns
Time CS# has to remain high between two transfers	TBD	-	-	ns
Part of the clock period where SCL has to remain high	TBD	-	-	ns
Part of the clock period where SCL has to remain low	TBD	-	-	ns
Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	TBD	TBD	-	ns
Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	TBD	TBD	-	ns
	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK TBD Time CS# has to remain low after the last falling edge of SCLK TBD Time CS# has to remain high between two transfers TBD Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low TBD Time SO(SDA Read Mode) will be stable before the next rising edge of SCL TBD	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK TBD - Time CS# has to remain low after the last falling edge of SCLK TBD - Time CS# has to remain high between two transfers TBD - Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low TBD - Time SO(SDA Read Mode) will be stable before the next rising edge of SCL TBD TBD	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK TBD - Time CS# has to remain low after the last falling edge of SCLK TBD - Time CS# has to remain high between two transfers TBD - Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low TBD - Time SO(SDA Read Mode) will be stable before the next rising edge of SCL TBD TBD -

Note: All timings are based on 20% to 80% of VDDIO-VSS

WINSTAR Display 13/40 4.2 inch Series


7. Command Table

om /w/#	D/C#	Hov	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	\n		
					-		1070.010								
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate settir A[8:0]= 12		1 300 Mil	v
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀		MUX Gate			
0	1		0	0	0	0	0	0	0	A ₈		Wox Gato	111100 001	ung do (/ t	[0.0] 1 1).
0	1		0	0	0	0	0	B ₂	B ₁	Bo		B[2:0] = 0	00 [POR].	
												Gate scan	ning seq	uence and	direction
												DIOI: CD			
												B[2]: GD Selects the	a 1st outr	out Gate	
												GD=0 [PO		out orato	
												G0 is the 1	st gate o		
												output seq	uence is	G0,G1, G	2, G3,
												GD=1, G1 is the 1	at aata a	uitaut aha	nnal aata
												output seq			
												B[1]: SM			
												Change so		rder of ga	te driver.
												SM=0 [PO		00 /1-4	10.2004
												G0, G1, Ginterlaced)		199 (left an	id right gat
												SM=1,			
												G0, G2, G	4G29	4, G1, G3	,G299
												DIOI TD			
												B[0]: TB TB = 0 [PC	DI coor	from GO	to G200
												TB = 1, sc			
				70	,							100 mm	SEED TO SECURE	120 m 120 m 120 m 120 m	224
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	Set Gate o	lriving vo	Itago	
		03	0	0	0	0.			CI.	/	Control	A[4:0] = 00			
0	1		U	U	U	A ₄	Аз	A ₂	A ₁	Ao	Control	VGH settir			
										\		A[4:0]	VGH	A[4:0]	VGH
												00h	20	0Dh	15
												03h	10	0Eh	15.5
												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	11h	17
												07h	12	12h	17.5
												08h	12.5	13h	18
												07h	12	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												0Ah 0Bh	13.5 14	17h Other	20 NA
												0Ch	14.5	Other	IVA
	ı I					1			1		1	OOH	14.0	1.	

WINSTAR Display 14/40 4.2 inch Series

Com	man	d Tal	ole											
	D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Comm	nand		Description
0	0	04	0	0	0	0	0	1	0	0		Driving	voltage	Set Source driving voltage
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Αo	Contro		· o.lage	A[7:0] = 41h [POR], VSH1 at 15V
0	1	_	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo				B [7:0] = A8h [POR], VSH2 at 5V.
		_		_				_		-				C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀				Remark: VSH1>=VSH2
] = 1,	14	++:		2	41/4			7]/B[7				f 0 0	C[7] = 0,
8.6	∃2 vo V	ııage	setti	ng ir	om 2.	.4 V (C)		17V	5ΠZ	voitage	e setting	110111 0.0	V VSL setting from -5V to -17V
	B[7:0]	VSH	I/VSH2	A/E	[7:0]	VSH1	VSH2		A/B[7:0]	VS	H1/VSH2	A/B[7:0]	VSH1/VSH	C[7:0] VSL
	8Eh	_	2.4	_	Eh		.6		21h		8.8	37h	13	0Ah -5
_	8Fh 90h	4-	2.5	_	Fh Oh	5			23h 24h	+	9.2	38h 39h	13.2	0Ch -5.5
	91h	_	2.7	_	1h	5			25h	+	9.4	3Ah	13.6	0Eh -6 10h -6.5
	92h	1	2.8	В	2h	(3		26h		9.6	3Bh	13.8	12h -7
	93h	_	2.9		3h	6			27h	_	9.8	3Ch	14	14h -7.5
	94h 95h	_	3.1	_	4h 5h	6	.2		28h 29h	-	10.2	3Dh 3Eh	14.2	16h -8
_	96h		3.2	_	6h		.4		2Ah		10.4	3Fh	14.6	18h -8.5
	97h	+	3.3	_	7 h	_	.5		2Bh		10.6	40h	14.8	1An -9 1Ch -9.5
	98h 99h	_	3.4	_	8h 9h	6	.6		2Ch 2Dh		10.8	41h 42h	15 15.2	1Eh -10
_	99n 9Ah	+	3.6	-	Ah	_	.8	-	2Eh	-	11.2	42h 43h	15.4	20h -10.5
	9Bh		3.7	В	Bh	6	.9		2Fh	į,	11.4	44h	15.6	22h -11
	9Ch	_	3.8	_	Ch	-			30h		11.6	45h	15.8	24h -11.5 26h -12
	9Dh 9Eh		3.9		Dh Eh	7	.1	-	31h 32h	-	11.8	46h 47h	16.2	28h -12.5
	9Fh		4.1	_	Fh		.3		33h	+	12.2	48h	16.4	2Ah -13
	A0h		1.2	С	0h	7	.4		34h		12.4	49h	16.6	2Ch -13.5
_	A1h	_	1.3	-	1h	_	.5		35h	+	12.6	4Ah	16.8	2Eh -14 30h -14,5
_	A2h A3h	4	1.4 1.5		2h 3h	7	.6	-	36h		12.8	4Bh Other	17 NA	30h -14.5 32h -15
	A4h	_	1.6	_	4h	7.					L			34h -15.5
	A5h	-	1.7	_	5h	100	.9							36h -16
	A6h A7h	-	1.8 1.9		6h 7h	8								38h -16.5
	A8h	_	5	_	8h	_	.2							3Ah -17 Other NA
	A9h		5.1	С	9h	8	.3							Cities INA
	AAh	_	5.2	_	Ah	8								
	ABh ACh	-	5.4	_	Bh Ch		.6							
	ADh	_	5.5	_	ther	N								
							\rightarrow							
														I=
0	0	08	0	0	0	0	1	0	0	0		Code Set	tıng	Program Initial Code Setting
											DIPP	rogram		The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during
					.,									operation.
0	0	09	0	0	0	0	1	0	0	1			or Initial	Write Register for Initial Code Setting
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Code S	Setting		Selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo				A[7:0] ~ D[7:0]: Reserved
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co				Details refer to Application Notes of Initial Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀				Journal of the state of the sta
			51	٥٠	<i>U</i> 5	J4	- 53	52		<i></i> 0				
0	0	0A	0	0	0	0	1	0	1	0	Bood !	Rogistor !	for Initial	Read Register for Initial Code Setting
"	"	UA	0	U	"	"	ı.	"	'	U		Register i Setting	ioi iiillial	nead negister for initial code Setting
												····· છ		

WINSTAR Display 15/40 4.2 inch Series

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	A ₁	Ao		A[1:0]: Description
-					2000					Ca-Vastr		00 Normal Mode [POR]
												01 Enter Deep Sleep Mode 1
												11 Enter Deep Sleep Mode 2
												After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode catting	Define data entry aggregate
0	1	11	0	0	0	0	0	A ₂	A ₁	A ₀	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR]
												A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 -Y decrement, X decrement, 01 -Y decrement, X increment, 10 -Y increment, X decrement, 11 -Y increment, X increment [POR] A[2] = AM Set the direction in which the address
												counter is updated automatically after data are written to the RAM.
												AM= 0, the address counter is updated in the X direction. [POR]
										1		AM = 1, the address counter is updated in the Y direction.
	10											
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode
												During operation, BUSY pad will output high.
												Note: RAM are unaffected by this command.

Com	man	d Ta	hle									
R/W#			D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A4	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A ₂	Aı	Ao	VOI Detection	A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1		A ₇	A 6	A 5	A ₄	Аз	A 2	A ₁	A ₀	Control	A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1	-10 TO 10 TO	A ₇	A 6	A 5	A ₄	Аз	A ₂	A ₁	A ₀	Control (Write to temperature register)	A[7:0] = 7Fh [POR]
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	Ao	Control (Read from	
											temperature register)	

WINSTAR Display 18/40 4.2 inch Series

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	to External temperature	A[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	sensor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
_		04	^	_				^		4	D' 1 11 1 2 2 1	
0	0	21	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Display Update Control	RAM content option for Display Update A[7:0] = 00h [POR]
0	4		D	0	0	0	0	0	0	0		B[7:0] = 00h [POR]
0	1		B ₇	0		0	0	0	U	U		A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0] BW RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content

WINSTAR Display 19/40 4.2 inch Series

Com	D/O#	Herri	D-7	Do	D-	ъ.	Da	Da	D.	DO	0	Description	
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Display Update Control 2	Display Update Sequence Optic Enable the stage for Master Act A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog	F7
												→ Disable OSC Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White)	After this command, data entrie	e will bo
J	U	24	U	0	1	U	J	1	U	0	/ RAM 0x24	written into the BW RAM until a command is written. Address pour advance accordingly	nother
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

WINSTAR Display 20/40 4.2 inch Series

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]:
												Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.
												The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
	.,			28			5 3					BUSY pad will output high during operation.
0	1	29	0	0	0	0	1 A ₃	0 A ₂	0 A ₁	A ₀	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

WINSTAR Display 21/40 4.2 inch Series

Com	man	d Ta	ble												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	tion		
0	0	2C	0 A ₇	0 A ₆	1 A ₅	0 A ₄	1 A ₃	1 A ₂	0 A ₁	0 A ₀	Write VCOM register		OM regist		ICU interface
U	**		111	710	713	714	713	112	7 (1	7 10		A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
		(1)							0.7						-
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display (Option:
1	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	Ao	Display Option				
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo			VCOM OT		on
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		(Comm	and 0x37,	Byte A)	
1	1	-	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		B[7:0]:	VCOM Re	aister	
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo			and 0x2C)		
	-		3.9	- 2		3223	-				-	2			
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀			G[7:0]: Dis		
1	1	S 39	G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		[5 bytes	and 0x37,	Byte B to	Byte F)
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		[5 bytes	2]		
1	1		17	16	15	4	13	12	l ₁	10		H[7:0]~	K[7:0]: Wa	veform V	ersion
1	1		J ₇	J ₆	J 5	J ₄	J ₃	J ₂	J ₁	Jo		(Comm	and 0x37,	Byte G to	Byte J)
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[4 bytes	3]		
				-					1 20				200 c) 900 April	2001	92000
0	0	2E	0	0	1	0	1	1	1	0	User ID Read				ed in OTP:
1	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao				rID (R38,	Byte A and
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		RAte 1)	[10 bytes]		
1	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co					
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do					
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo					
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo	-				
			12					-		-	-				
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀	-				
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀					
1	1		l ₇	16	15	 4	l ₃	l ₂	l ₁	l ₀					
1	1		J_7	J ₆	J ₅	J ₄	J ₃	J ₂	J_1	Jo					

Com	man	d Ta	ble									
	D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A5	A4	0	0	A ₁	Ao		A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01]
												Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command.
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
					O Sec					***		The command required CLKEN=1. Refer to Register 0x22 for detail.
											E	BUSY pad will output high during operation.
0	0	00	0					0	_	0	MACA LIT	With LUT and the form MOULE to form
0	0	32	0 A ₇	0 A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Write LUT register	Write LUT register from MCU interface [227 bytes], which contains the content of
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FF
0	1			:	:			1		:	-	and XON[nXY] Refer to Session 6.7 WAVEFORM
0	1					19#37	(9 4))	•	•			SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1683 application note.
												BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1	00	A ₁₅	0.75	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	On to oracus meau	A[15:0] is the CRC read out value
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		
									- 20		L	1

WINSTAR Display 23/40 4.2 inch Series

		d Ta						102 100				T=		
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	36	0	0	1,	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]		
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.		
							142					1		
0	0	37	0	0	1	1	0	1	1	1		Write Register for Display Option		
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection		
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		0: Default [POR] 1: Spare		
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co		1. Spare		
0	1		D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0]		
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	Εı	Εo		C[7:0] Display Mode for WS[15:8]		
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	Fo		D[7:0] Display Mode for WS[23:16] 0: Display Mode 1		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go	1	1: Display Mode 1		
0	1	5 3	H ₇	H ₆	H ₅	H ₄	Нз	H ₂	Ηı	Ho				
0	1		 ₇	16	I 5	14	l ₃	12	l ₁	lo		F[6]: Ping-Pong for Display Mode 2 0: RAM Ping-Pong disable [POR]		
0	1		J ₇	J ₆	J 5	J ₄	J ₃	J ₂	J ₁	Jo		1: RAM Ping-Pong enable		
												G[7:0]~J[7:0] module ID /waveform version.		
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support		
												for Display Mode 1		
0	0	38	0	0	1	1	1	0	0	0	Write Degister for Hear I	Write Register for User ID		
0	1	30	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Write Register for Oser IL	A[7:0]]~J[7:0]: UserID [10 bytes]		
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo				
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		Remarks: A[7:0]~J[7:0] can be stored in OTP		
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		OII		
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀				
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo				
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go	-			
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho	-			
0	1		17	16	I ₅	14	l ₃	12	l ₁	lo	1			
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo	-			
								_			E	4		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode		
0	1		0	0	0	0	0	0	A ₁	Ao		A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage		
												Remark: User is required to EXACTLY follow the reference code sequences		

WINSTAR Display 24/40 4.2 inch Series

Com	man	Command Table													
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	1		
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	ALCOHOLOGICAL PROPERTY OF THE PARTY OF THE P	r waveform for VBD		
0	1	-	_			A ₄	0	0	-	Ao	Border Waverollin Control		[POR], set VBD as HIZ.		
U	\$		A ₇	A ₆	A ₅	H4	U	U	A ₁	A ₀		A [7:6] :Sele	ect VBD option		
												A[7:6]	Select VBD as		
												00	GS Transition,		
													Defined in A[2] and A[1:0]		
												01 Fix Level,			
												10	Defined in A[5:4]		
												10 11[POR]	VCOM HiZ		
												TITEON	ПІД		
												A [5:4] Fix Le	evel Setting for VBD		
												A[5:4]	VBD level		
												00	VSS		
												01	VSH1		
												10	VSL		
												11	VSH2		
												VBD Level S	ransition setting for VBD		
												00b: VCOM; 01b: VSH1; 10b: VSL; 11b: VSH2			
												A[1:0]	VBD Transition		
												00	LUT0		
												01	LUT1		
												10	LUT2		
												11	LUT3		
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LL	JT end		
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	Ao		Set this byte to 22h			
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM C			
0	1		0	0	0	0	0	0	0	Ao		A[0] = 0 [POF			
									1	300			M corresponding to RAM0x24		
												1 : Read RAI	M corresponding to RAM0x26		
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the o	tart/end positions of the		
		44						- 3			Start / End position		ess in the X direction by an		
0	11		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	- Clart / Ella position	address unit	(1) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		
0	1		0	0	B ₅	B ₄	Вз	B ₂	B ₁	Bo					
												A[5:0]: XSA[5:0], XStart, $POR = 00h$		
												B[5:0]: XEA[5:0], XEnd, POR = 31h		
											The second second		A & &		
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address		tart/end positions of the		
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Start / End position		ess in the Y direction by an		
0	1		0	0	0	0	0	0	0	A ₈		address unit	TOT HAIM		
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀	1	A[8:0]: VSA[8:0], YStart, POR = 000h		
0	1		0	0	0	0	0	0	0	B ₈	-	B[8:0]: YEAI	8:0], YEnd, POR = 12Bh		
U			U	U	U	U	U	U	U	אם		_[-[]/[[,		
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	Auto Write R	ED RAM for Regular Pattern		
0	1		A ₇	A ₆	A 5	A ₄	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 00h	[POR]		

WINSTAR Display 25/40 4.2 inch Series

Com	man	d Ta	ble												
	D/C#			D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on		
π	Б/О#						50			D 0	Command	A[7]: The A[6:4]: Ste	1st step va ep Height,	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	300
												011	64	111	NA
												A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source			
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	256
												010	32	110	400
												011	64	111	NA
												BUSY pag operation.		ut high du	ring
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	Auto Write	BAN BAI	M for Regi	ular Pattern
0	1	7/	A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 0		vi ioi riegi	ulai i alleiii
							5	7.2				A[6:4]: Ste	The 1st step value, POR = 0]: Step Height, POR= 000 of alter RAM in Y-direction according		
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
									\			010	32	110	300
										1		011	64	111	NA
												to Source	ter RAM ir	X-direction	on according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	256
												010	32	110	400
												011	64	111	NA
												During op high.	eration, B	USY pad	will output
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi	al settings	for the R	AM X addres
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	in the add			IN A GOULGS
-	•				, 13	, 14	, 13	, 12	/ VI	/ 10		American Estate Construction	THE STATE OF		

WINSTAR Display 26/40 4.2 inch Series

Com	Command Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
												A[5:0]: 00h [POR].
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y address
0	1		A ₇	A ₆	A 5	A ₄	A ₃	A ₂	A ₁	Ao	counter	in the address counter (AC)
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 000h [POR].
											03	0
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.

WINSTAR Display 27/40 4.2 inch Series

8. Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	Indoor	8:1		ı		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	ı	sec	
Life		Topr		1000000times or 5years		·	

Notes:

- 8-1. Luminance meter: Eye-One Pro Spectrophotometer.
- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 8-3. WS: White state, DS: Dark state

9. Handling, Safety and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status

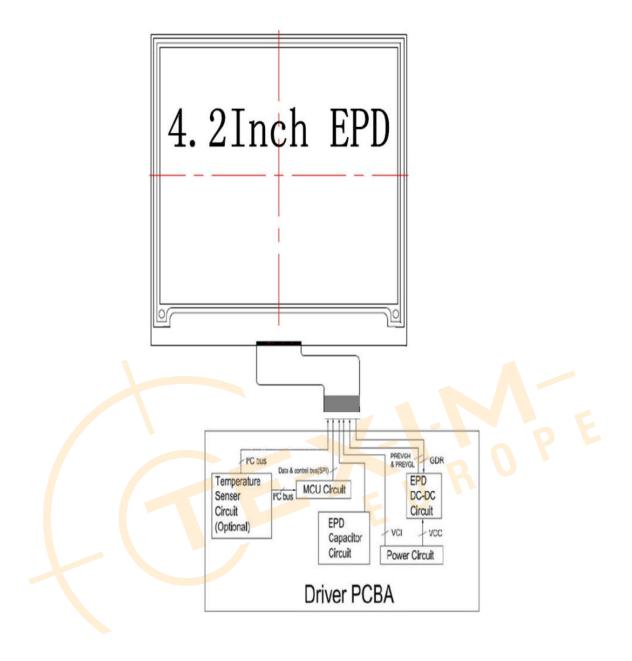
Product specification This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC

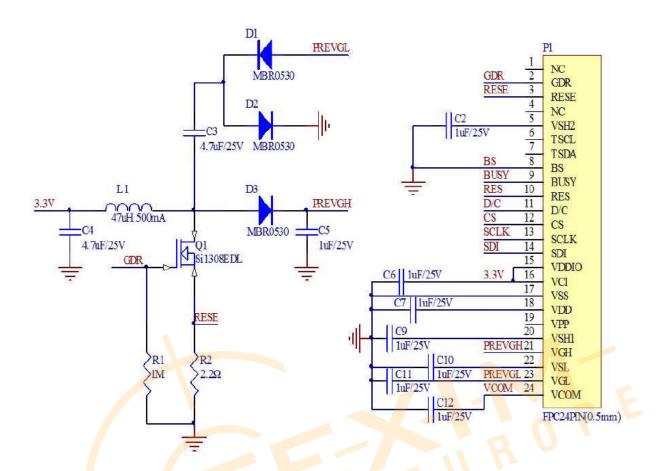
134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information


Where application information is given, it is advisory and does not form part of the specification.

10.Reliability test

NO	Test items	Test condition				
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern				
2	High-Temperature Storage	T = +70°C, RH=40%, 240h Test in white pattern				
3	High-Temperature Operation	T = +50°C, RH = 30%, 240h				
4	Low-Temperature Operation	0°C, 240h				
5	High-Temperature, High-Humidity Operation	T=+40°C, RH=90%,168h				
6	High Temperature, High Humidity Storage	T=+60°C, RH=80%,240h Test in white pattern				
7	Temperature Cycle	1 cycle:[-25°C 30min]→[+70 °C 30 min] : 100 cycles Test in white pattern				
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern				
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell,not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display,no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display,including IC and FPC area)				

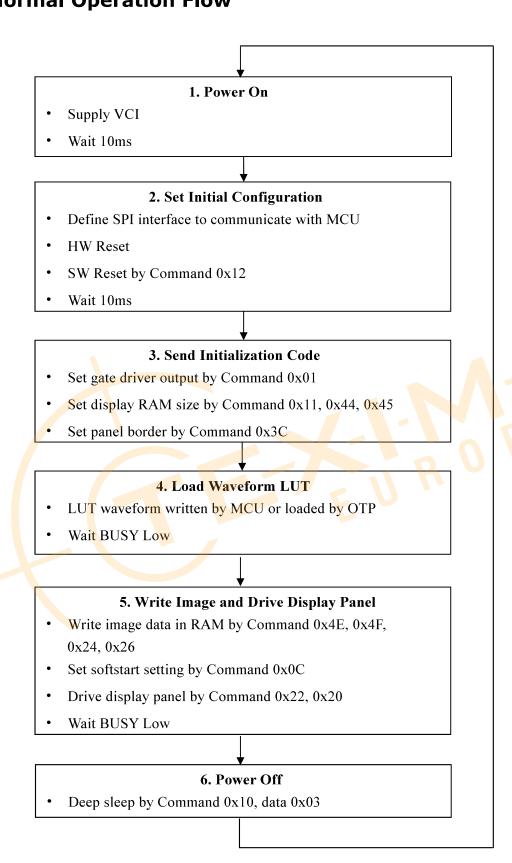

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

11. Block Diagram

WINSTAR Display 30/40 4.2 inch Series

12. Reference Circuit

Par <mark>t</mark> Name	Requirements for spare part			
C1—C12	0603/0805; X5R/X7R;Voltage Rating:≥25V			
R1、R2 0603/0805;1% variation,≥0.05W				
D1-D3	MBR0530: 1)Reverse DC Voltage≥30V 2)Io≥500mA			
01-03	3)Forward voltage ≤430mV			
01	Si1308EDL:1)Drain-Source breakdown voltage≥30V			
Q1	2)Vgs(th)≤1.5V 3)Rds(on)≤400mΩ			
L1	refer to NR3015: Io=500mA(max)			
P1	24pins,0.5mm pitch			


13. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) WINSTAR Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect.

DESPI Development Kit consists of the development board and the pinboard.

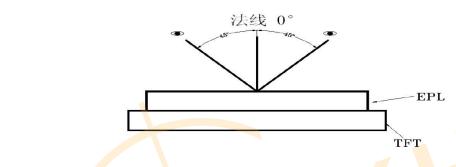
14. Typical Operating Sequence 14.1 Normal Operation Flow

14.2 Normal Operation Reference Program Code

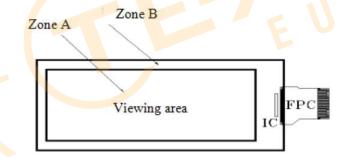
ACTION	VALUE/DATA	COMMENT			
	POWER ON	·			
delay	10ms				
PIN CONFIG					
RESE#	low	Hardware reset			
delay	200us				
RESE#	high				
delay	200us				
Read busy pin		Wait for busy low			
Command 0x12		Software reset			
Read busy pin		Wait for busy low			
Command 0x01	Data0x2b 0x01 0x00	Set display size and driver output control			
Command 0x11	Data 0x01	Ram data entry mode			
Command 0x44	Data 0x00 0x31	Set Ram X address			
Command 0x45	Data 0x2b 0x01 0x00 0x00	Set Ram Y address			
Command 0x3C	Data 0x01	Set border			
	LOAD IMAGE AND	UPDATE			
Command 0x4E	Data 0x00	Set Ram X address counter			
Command 0x4F	Data 0x2b 0x00	Set Ram Y address counter			
Command 0x24	Data 0xXX, 0xXX	Write B/W image data into to Register			
		0x24 RAM			
Command 0x4E	Data 0x00	Set Ram X address counter			
Command 0x4F	Data 0x2b 0x00	Set Ram Y address counter			
Command 0x26	Data 0xXX, 0xXX	Write Red image data into Register 0x26			
		RAM			
Command 0x20					
Read busy pin					
Command 0x10	Data 0X01	Enter deep sleep mode			
	POWER OFF	7			

WINSTAR Display 34/40 4.2 inch Series

15. Inspection condition


15. 1 Environment

Temperature: $25\pm3^{\circ}$ C Humidity: $55\pm10^{\circ}$ RH


15. 2 Illuminance

Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 45°surround.

15.3 Inspection method

15. 4 Display area

15. 5 Inspection standard

15. 5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	D≤0.25mm, Allowed 0.25mm <d≤0.4mm。n≤3, 0.4mm<d="" allow<="" and="" distance≥5mm="" not="" td=""><td>MI</td><td>Visual inspection</td><td></td></d≤0.4mm。n≤3,>	MI	Visual inspection	
3	Black/White spots (No switch)	L≤0.6mm, W≤0.2mm, N≤1 L≤2.0mm, W>0.2mm, Not Allow L>0.6mm, Not Allow		Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	wrong/Missing correct Shortcircuit/ Circuit break/ Not Allow		Visual inspection	Zone A
6					

WINSTAR Display 36/40 4.2 inch Series

15.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
I	B/W spots /Bubble/ Foreign bodies/ Dents	D= $(L+W)/2$ D ≤ 0.25 mm, Allowed 0.25mm $\leq D\leq 0.4$ mm, N ≤ 3 D ≥ 0.4 mm, Not Allow	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	X≤3mm,Y≤0.5mm 2mm≤X or 2mm≤Y Allow W≤0.1mm,L≤5mm, n≤ 2 Edge crown: X≤0.3mm, Y≤3mm	MI	Visual / Microscope	Zone A Zone B
5	Substrate color difference	Allowed			
6	FPC broken/ Goldfingers oxidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B

WINSTAR Display 37/40 4.2 inch Series

7	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
8	Edge Adhesives height/FPL/ Edge adhesives bubble	Edge Adhesives height≤Display surface Edge adhesives seep in≤1/2 Margin width FPL tolerance ±0.3mm Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm n≤3	MI	Visual / Ruler	Zone B
9	Protect film	Surface scratch but not effect protect function, Allow		Visual Inspection	

WINSTAR Display 38/40 4.2 inch Series

16. Packing

TBD

17. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.

Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Texim Europe B.V. its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Texim"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Texim makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product.

It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time.

All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts.

Please contact us if you have any questions about the contents of the datasheet.

This may not be the latest version of the datasheet. Please check with us if a later version is available.

Texim Europe - contact details

Headquarters & Warehouse

Elektrostraat 17 NL-7483 PG Haaksbergen The Netherlands

T: +31 (0)53 573 33 33 E: info@texim-europe.com Homepage: www.texim-europe.com

The Netherlands

Elektrostraat 17 NL-7483 PG Haaksbergen

T: +31 (0)53 573 33 33 E: nl@texim-europe.com

Belgium

Zuiderlaan 14, box 10 B-1731 Zellik

T: +32 (0)2 462 01 00 E: belgium@texim-europe.com

UK & Ireland

St Mary's House, Church Lane Carlton Le Moorland Lincoln LN5 9HS

T: +44 (0)1522 789 555 E: uk@texim-europe.com

Germany

Bahnhofstrasse 92 D-25451 Quickborn

T: +49 (0)4106 627 07-0 E: germany@texim-europe.com

Germany

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 E: muenchen@texim-europe.com

Austria

Warwitzstrasse 9 A-5020 Salzburg

T: +43 (0)662 216 026 E: austria@texim-europe.com

Nordic

Stockholmsgade 45 2100 Copenhagen

T: +45 88 20 26 30 E: nordic@texim-europe.com

Italy

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 E: italy@texim-europe.com